001044678 001__ 1044678 001044678 005__ 20250801202302.0 001044678 0247_ $$2doi$$a10.29363/nanoge.hopv.2025.119 001044678 037__ $$aFZJ-2025-03327 001044678 1001_ $$0P:(DE-HGF)0$$aCastriotta, Luigi Angelo$$b0 001044678 1112_ $$a12º nternational Conference on Hybrid and Organic Photovoltaics$$cRoma$$d2025-05-12 - 2025-05-14$$wItaly 001044678 245__ $$aStandardized Protocols for Evaluating Mechanical Performance of Flexible Solar Cells & Modules: Insights from new Procedures ISOS-B, ISOS-M, and Novel Bending Tests 001044678 260__ $$bFUNDACIO DE LA COMUNITAT VALENCIANA SCITO València$$c2025 001044678 29510 $$aProceedings of the International Conference on Hybrid and Organic Photovoltaics - FUNDACIO DE LA COMUNITAT VALENCIANA SCITO València, 2025. - ISBN - doi:10.29363/nanoge.hopv.2025.119 001044678 300__ $$a 001044678 3367_ $$2ORCID$$aCONFERENCE_PAPER 001044678 3367_ $$033$$2EndNote$$aConference Paper 001044678 3367_ $$2BibTeX$$aINPROCEEDINGS 001044678 3367_ $$2DRIVER$$aconferenceObject 001044678 3367_ $$2DataCite$$aOutput Types/Conference Paper 001044678 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1754033367_23131 001044678 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb 001044678 520__ $$aThe advancement of flexible photovoltaic (PV) technologies needs the establishment of standardized protocols for their characterization, particularly concerning mechanical performance and durability. Here we show newly proposed standard procedures such as ISOS-B, ISOS-M and a new protocol for measuring PCE over 1000 bending cycles under 1% strain, which aim to complete existing guidelines such as IEC 61215 and IEC 61646.ISOS-B focus on bending stress testing. This protocol is crucial for accurately assessing the mechanical stability of flexible PV devices, which can exhibit negligible degradation even under extreme bending conditions. ISOS-M addresses mechanical and long-term stability under various environmental conditions, suggesting tests in controlled ambient conditions to isolate the effects of mechanical stress from other environmental factors. This is essential for understanding how flexible devices perform over time, especially when exposed to real-world conditions. We further evaluate the need to measure the mechanical stability of a flexible device independently from the thickness and on the material properties of the substrate, by calculating its strain and defining a new figure of merit called fatigue factor. The introduction of a fatigue factor quantifies the mechanical performance of flexible PV devices, facilitating objective comparisons of durability and efficiency. This factor allows researchers to evaluate the relationship between mechanical stress and electrical performance. In conclusion, by improving upon existing IEC guidelines, these standards provide a robust framework for evaluating the mechanical and environmental performance of flexible PV technologies, ultimately contributing to their commercialization and integration into different applications. The integration of these standardized procedures fosters advancements in flexible photovoltaics, leading to improved device reliability and performance in practical applications. 001044678 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x0 001044678 536__ $$0G:(DE-HGF)POF4-1214$$a1214 - Modules, stability, performance and specific applications (POF4-121)$$cPOF4-121$$fPOF IV$$x1 001044678 588__ $$aDataset connected to CrossRef Conference 001044678 7001_ $$0P:(DE-HGF)0$$aFukuda, Kenjiro$$b1 001044678 7001_ $$0P:(DE-HGF)0$$aAlmora, Osbel$$b2 001044678 7001_ $$aSun, Lulu$$b3 001044678 7001_ $$aUddin, Md Aslam$$b4 001044678 7001_ $$aJiao, Haoyang$$b5 001044678 7001_ $$0P:(DE-Juel1)178784$$aForberich, Karen$$b6 001044678 7001_ $$0P:(DE-HGF)0$$aJ. Brabec, Christoph$$b7 001044678 7001_ $$aHuang, Jinsong$$b8 001044678 773__ $$a10.29363/nanoge.hopv.2025.119 001044678 8564_ $$uhttps://www.nanoge.org/proceedings/HOPV25/678ed2629775a87b159425a4 001044678 909CO $$ooai:juser.fz-juelich.de:1044678$$pVDB 001044678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178784$$aForschungszentrum Jülich$$b6$$kFZJ 001044678 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b7$$kFZJ 001044678 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0 001044678 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1214$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x1 001044678 9141_ $$y2025 001044678 920__ $$lyes 001044678 9201_ $$0I:(DE-Juel1)IET-2-20140314$$kIET-2$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0 001044678 980__ $$acontrib 001044678 980__ $$aVDB 001044678 980__ $$acontb 001044678 980__ $$aI:(DE-Juel1)IET-2-20140314 001044678 980__ $$aUNRESTRICTED