001     1044680
005     20250801202302.0
024 7 _ |a 10.29363/nanoge.hopv.2025.074
|2 doi
037 _ _ |a FZJ-2025-03329
100 1 _ |a Ammirati, Giuseppe
|0 P:(DE-HGF)0
|b 0
111 2 _ |a 12º nternational Conference on Hybrid and Organic Photovoltaics
|c Roma
|d 2025-05-12 - 2025-05-14
|w Italy
245 _ _ |a Hole Transfer Dynamics and Optoelectronic Properties in PCE10:FOIC Blends for Organic Photovoltaics
260 _ _ |c 2025
|b FUNDACIO DE LA COMUNITAT VALENCIANA SCITO València
295 1 0 |a Proceedings of the International Conference on Hybrid and Organic Photovoltaics - FUNDACIO DE LA COMUNITAT VALENCIANA SCITO València, 2025. - ISBN - doi:10.29363/nanoge.hopv.2025.074
300 _ _ |a
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1754035282_24662
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a The development of high-performance organic photovoltaic materials has gained significant attention due to their potential for low-cost, flexible, and lightweight solar energy solutions, including semi-transparent photovoltaics for building-integrated applications.[1] Central to this effort is the optimization of donor-acceptor blends, where efficient charge transfer and exciton dynamics are critical for enhancing device efficiency.[2] Among the promising materials, the blend of PCE10, a polymer donor, and FOIC, a non-fullerene acceptor, has shown considerable potential due to its strong near-infrared absorption and favorable energy level alignment.[3] In this work, we present a comprehensive investigation into the hole transfer dynamics and optoelectronic properties of a blend material for organic photovoltaic applications. Through a combination of theoretical modeling and experimental analysis, we aim to deepen the understanding of the role of the electronic and excitonic structures in the dynamics that govern the charge separation. We calculated the energy levels and the absorption spectra by DFT for the individual PCE10 and FOIC molecules as well as their blended configurations. In parallel, we performed extensive experimental investigations, including photoelectron spectroscopy (PES) and femtosecond transient absorption spectroscopy, to explore the photo-physical properties of PCE10, FOIC, and their blend. PES measurements allowed us to estimate the ionization energy and electron affinity of the materials, which are critical for understanding the energy level alignment in the blend. The temporal dynamics of the excitons in the blend were further analyzed to unravel the recombination mechanisms that were dominated by the exciton-exciton annihilation (EEA). By comparing the decay times with different probe energies, we show how the hole transfer processes from acceptor to donor within the blend affect the efficiency of the EEA mechanism. These findings deepen our understanding of the complex interactions between donor and acceptor materials in organic photovoltaic systems, providing valuable insights into the recombination processes and charge transfer mechanisms in organic blends.
536 _ _ |a 1212 - Materials and Interfaces (POF4-121)
|0 G:(DE-HGF)POF4-1212
|c POF4-121
|f POF IV
|x 0
536 _ _ |a 1214 - Modules, stability, performance and specific applications (POF4-121)
|0 G:(DE-HGF)POF4-1214
|c POF4-121
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Catone, Daniele
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Toschi, Francesco
|0 P:(DE-HGF)0
|b 2
700 1 _ |a O'Keeffe, Patrick
|b 3
700 1 _ |a Paladini, Alessandra
|b 4
700 1 _ |a Mattioli, Giuseppe
|b 5
700 1 _ |a Moras, Paolo
|b 6
700 1 _ |a Turchini, Stefano
|b 7
700 1 _ |a Miliotti, Valeria
|b 8
700 1 _ |a Brabec, Christoph
|0 P:(DE-Juel1)176427
|b 9
700 1 _ |a Wagner, Michael
|0 P:(DE-Juel1)191164
|b 10
700 1 _ |a McCulloch, Iain
|b 11
700 1 _ |a Di Carlo, Aldo
|b 12
700 1 _ |a Sheverdyaeva, Polina
|b 13
773 _ _ |a 10.29363/nanoge.hopv.2025.074
856 4 _ |u https://www.nanoge.org/proceedings/HOPV25/67862aa7faccb913b4d93040
909 C O |o oai:juser.fz-juelich.de:1044680
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)176427
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)191164
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1212
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1214
|x 1
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-2-20140314
|k IET-2
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)IET-2-20140314
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21