001     1044681
005     20250804115208.0
024 7 _ |a 10.1002/aenm.202404957
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-03330
|2 datacite_doi
024 7 _ |a WOS:001386818000001
|2 WOS
037 _ _ |a FZJ-2025-03330
082 _ _ |a 050
100 1 _ |a Zhang, Jiyun
|0 P:(DE-Juel1)194716
|b 0
|e Corresponding author
245 _ _ |a Autonomous Optimization of Air‐Processed Perovskite Solar Cell in a Multidimensional Parameter Space
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1754038678_24662
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Traditional optimization methods often face challenges in exploring complex process parameter spaces, which typically result in suboptimal local maxima. Here an autonomous framework driven by a machine learning (ML)-guided automated platform is introduced to optimize the fabrication conditions of additive- and passivation-free perovskite solar cells (PSCs) under ambient conditions. By effectively exploring a 6D parameter space, this method identifies five parameter sets achieving efficiencies above 23%, with a peak efficiency of 23.7% with limited experimental budgets. Feature importance analysis indicates that the rotation speeds during the first and second steps of perovskite processing are the most influential factors affecting device performance, thereby meriting prioritization in the optimization efforts. These results demonstrate the exceptional capability of the autonomous framework in addressing complex process parameter optimization challenges and its potential to advance perovskite photovoltaic technology. Beyond PSCs, this work provides a reliable and comprehensive strategy for optimizing solution-processed semiconductors and highlights the broader applications of autonomous methodologies in materials science.
536 _ _ |a 1213 - Cell Design and Development (POF4-121)
|0 G:(DE-HGF)POF4-1213
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Le Corre, Vincent Marc
|0 P:(DE-Juel1)201923
|b 1
700 1 _ |a Wu, Jianchang
|0 P:(DE-Juel1)192542
|b 2
700 1 _ |a DU, Tian
|0 P:(DE-Juel1)200304
|b 3
700 1 _ |a Osterrieder, Tobias
|0 P:(DE-Juel1)190775
|b 4
700 1 _ |a Zhang, Kaicheng
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Zhang, Handan
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Lüer, Larry
|0 P:(DE-Juel1)206674
|b 7
|u fzj
700 1 _ |a Hauch, Jens
|0 P:(DE-Juel1)177626
|b 8
700 1 _ |a Brabec, Christoph J.
|0 P:(DE-Juel1)176427
|b 9
|e Corresponding author
773 _ _ |a 10.1002/aenm.202404957
|g Vol. 15, no. 19, p. 2404957
|0 PERI:(DE-600)2594556-7
|n 19
|p 2404957
|t Advanced energy materials
|v 15
|y 2025
|x 1614-6832
856 4 _ |u https://juser.fz-juelich.de/record/1044681/files/Advanced%20Energy%20Materials%20-%202025%20-%20Zhang%20-%20Autonomous%20Optimization%20of%20Air%E2%80%90Processed%20Perovskite%20Solar%20Cell%20in%20a.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1044681
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)194716
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)192542
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)200304
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)190775
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)206674
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)177626
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)176427
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1213
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-12
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-12
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-12
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ADV ENERGY MATER : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-2-20140314
|k IET-2
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IET-2-20140314
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21