
RESEARCH ARTICLE
www.advenergymat.de

Autonomous Optimization of Air-Processed Perovskite Solar
Cell in a Multidimensional Parameter Space

Jiyun Zhang,* Vincent M. Le Corre, Jianchang Wu, Tian Du, Tobias Osterrieder,
Kaicheng Zhang, Handan Zhang, Larry Lüer, Jens Hauch, and Christoph J. Brabec*

Traditional optimization methods often face challenges in exploring complex
process parameter spaces, which typically result in suboptimal local maxima.
Here an autonomous framework driven by a machine learning (ML)-guided
automated platform is introduced to optimize the fabrication conditions of
additive- and passivation-free perovskite solar cells (PSCs) under ambient
conditions. By effectively exploring a 6D parameter space, this method
identifies five parameter sets achieving efficiencies above 23%, with a peak
efficiency of 23.7% with limited experimental budgets. Feature importance
analysis indicates that the rotation speeds during the first and second steps of
perovskite processing are the most influential factors affecting device
performance, thereby meriting prioritization in the optimization efforts. These
results demonstrate the exceptional capability of the autonomous framework
in addressing complex process parameter optimization challenges and its
potential to advance perovskite photovoltaic technology. Beyond PSCs, this
work provides a reliable and comprehensive strategy for optimizing
solution-processed semiconductors and highlights the broader applications of
autonomous methodologies in materials science.

1. Introduction

Over recent decades, metal-halide perovskite solar cells
(PSCs) have emerged as a groundbreaking technology in the
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renewable energy field due to their re-
markable efficiency improvements.[1–3]

So far, the preparation of high-
performance perovskite devices typ-
ically necessitates inert atmospheres
(e.g., nitrogen gloveboxes), dramatically
increasing production costs and com-
plexity, thereby hindering scalability.[4,5]

Therefore, manufacturing perovskite
devices in ambient air is a viable alterna-
tive to circumvent these limitations.[6–9]

Developing a dependable air-processed
procedure for fabricating solution-
processed PSCs often requires carefully
optimizing process parameters within a
high-dimensional parameter space.[10–12]

However, simultaneously optimizing
these parameters is inherently challeng-
ing due to the complex intercorrelations
among variables.[13] Traditional Ediso-
nian methods proved inadequate in this
context because of their inherent rigidity
and inability to effectively untangle

complex, nonlinear interdependencies among the
parameters.[14,15] Moreover, these conventional approaches
typically rely on linear and single-variable optimization pro-
cesses that are susceptible to suboptimal local maxima, thus
limiting their ability to uncover global solutions.[16] Conse-
quently, advanced techniques capable of reproducing laboratory
work and intelligently preselecting experimental conditions are
highly required for streamlining and expediting optimization
tasks.
Automated acceleration platforms, known as materials’ ac-

celeration platforms (MAPs) and device acceleration platforms
(DAPs), have emerged as transformative tools in materials
science.[17–25] These platforms enable accelerated discoveries
and unparalleled efficiency gains through rapid preparation and
systematic exploration.[26–29] The methodology of utilizing au-
tomation in functional energy materials’ research, especially for
perovskite-basedmaterials, is drawing growing attention.[30–33] In
perovskite photovoltaics, automated fabrication systems have in-
troduced a paradigm shift by minimizing operator-induced vari-
ability and enhancing the consistency of device properties.[34,35]

Despite these advantages, a significant limitation of current au-
tomated platforms is their inability to adapt and make intelligent
decisions, a capability crucial for optimizing parameter sets in
complex high-dimensional spaces.
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Figure 1. Schematic of the fabrication process for full perovskite devices in the air. A) Schematic of the automated preparation for PSCs with an n–i–p
structure (ITO/SnO2/perovskite/Spiro-OMeTAD/Au) using the two-step sequential deposition method. B) Pipeline diagram of the automated prepara-
tion procedure for full PSCs and the six process parameters (a–f) selected for global optimization.

To maximize efficiency, integrating machine learning (ML) al-
gorithms, such as Bayesian optimization (BO), into automated
platforms has emerged as a powerful strategy for optimizing
material exploration.[10,36–40] These autonomous methodologies
intelligently leverage real-time experimental feedback to guide
automation, deciphering patterns and trends within complex
datasets. By systematically exploring the intricate interdepen-
dencies among highly correlated parameters, these intelligent
systems efficiently identify optimal conditions.[41,42] Such in-
tegrated self-driving platforms significantly accelerate conver-
gence toward the most effective device configurations.[43] This
autonomous approach holds huge promise for unlocking the full
potential of perovskite-based devices and advancing renewable
energy technologies.
In this study, we empowered an automated device acceleration

platform, SPINBOT (Figure S1, Supporting Information), with
an ML algorithm to optimize the process parameters for fabri-
cating full perovskite devices under ambient conditions. The au-
tonomous framework demonstrated its effectiveness by explor-
ing a 6D parameter space to maximize device efficiency. With
only 77 trials of process parameter sets, this framework success-
fully identified several parameter combinations that delivered de-
vice efficiencies exceeding 23%, with a peak efficiency of 23.7%.
These results contribute to advancement in perovskite photo-
voltaic technology and highlight the transformative potential of
intelligent, autonomous optimization methodologies in materi-
als science.

2. Results and Discussion

2.1. Automated Fabrication of Perovskite Solar Cells in Ambient
Air

Figure 1A illustrates the automated fabrication process for the
perovskite layer in a metal-halide perovskite device with an n–

i–p structure of ITO/SnO2/perovskite/Spiro-OMeTAD/Au (ITO:
indium tin oxide). The thin films are fabricated using a two-step
sequential deposition method under ambient conditions. Specif-
ically, the process begins with the deposition of a PbI2 precur-
sor onto a SnO2-coated ITO substrate to form a wet PbI2 layer
without thermal annealing. This is followed by dripping an or-
ganic ammonium halide solution (FAI/MACl) onto the wet film,
which is subsequently annealed to form the perovskite layer. As
depicted in Figure 1B, the pipeline schematic outlines the auto-
mated platform’s sequential execution of the solution-processed
deposition steps, including the active and transport layers. The
complete fabrication workflow is demonstrated in Video S1 (Sup-
porting Information).
The preparation of stacked perovskite devices involves many

process parameters, each with the potential to significantly in-
fluence overall device performance. To gain deeper insights into
these effects, we compiled a comprehensive list of process pa-
rameters, as shown in Figure S2 (Supporting Information). In
a previous study, we used the one-variable-at-a-time (OVAT) ap-
proach to study these parameters individually, which allowed
us to identify those most critical to device performance.[44]

By systematically varying a single parameter while keeping
all others constant, the OVAT method effectively isolates and
highlights the specific impact of each variable on device
performance.
Building on this foundation, we identified six key process

parameters (labeled as parameters a–f in Figure 1B) for global
optimization to enhance the overall performance of the devices.
These parameters include spin-coating speeds and durations at
various fabrication stages, the dripping speed of the ammonium
halide precursor, and others, as detailed inTable 1. The SPINBOT
platform significantly surpasses manual fabrication methods by
generating high-quality datasets and providing precise control
over traditional unregulated parameters, such as the tip height
and ejection speed of the dripping nozzle, with fine granularity
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Table 1. Six input process variables and their respective optimization
ranges.

Process variable Design
range

Interval Process variable Design
range

Interval

a. Spin speed 1 500–3000
rpm

10 rpm d. Dripping
speed

10–500 µL
s−1

5 µL s−1

b. Spin
duration, t1

5–50 s 1 s e. Spin duration,
t3

5–45 s 1 s

c. Spin speed 2 500–3000
rpm

10 rpm f. Spin speed 3 1000–5000
rpm

10 rpm

(e.g., increments of 1 rpm, 0.1 mm, 0.1 µL s−1), as shown in
Figure S3 (Supporting Information).[11,45] This advanced capa-
bility not only improves data integrity but also broadens the
optimization scope by introducing additional parameter dimen-
sions into the process. The ability of the automation platform to
precisely control these parameters enables the construction of
a 6D parameter space. This holistic and comprehensive explo-
ration minimizes the risk of overlooking potential combinations
for optimal device performance. Importantly, this automated
platform is designed to optimize parameters within practical and
experimental meaningful intervals rather than being restricted
to minimal changes. This ensures that selected parameter
settings are impactful and well suited to specific experimental
conditions.

2.2. Workflow of the Autonomous Closed-Loop Optimization
Method

Figure 2 presents the schematic of the autonomous iterative opti-
mization process for high-performance perovskite devices, artic-
ulated into four interconnected stages. The process begins with
the identification of key process parameters that significantly in-
fluence device performance using the OVAT method. This ap-
proach evaluates the relationship between each independent vari-
able and the output performance. By isolating critical parame-
ters and excluding nonessential ones, this approach simplifies
the optimization process and reduces experimental costs. Build-
ing on this foundation, a multidimensional parameter space is
constructed, enabling a transition from single-variable optimiza-
tion to a more comprehensive and integrated analysis. To effec-
tively sample this parameter space, the Latin hypercube sampling
(LHS) method is used to determine 32 initial representative pa-
rameter sets (as detailed in Table S1 in the Supporting Informa-
tion). Unlike simple random sampling, the LHSmethod ensures
more uniform and systematic coverage of the design space, ef-
fectively minimizing the number of iterative rounds required in
the subsequent optimization stages.[43] The generated parame-
ter sets serve as the starting points for subsequent iterative ex-
periments. Devices are fabricated using the SPINBOT platform,
which ensures precise control of standard operating procedures
to maintain consistency and reproducibility throughout the ex-
periment process. After fabrication, the performance of each de-
vice is evaluated through J–V characterization, with a primary

Figure 2. Schematic of the autonomous optimization workflow for high-performance air-processed perovskite devices. A) Identification of key process
parameters using the OVAT method. B) Construction of a 6D parameter space and selection of initial parameter sets through the Latin hypercube
sampling method. C) Execution of ML-driven autonomous iterative experimentation to maximize device efficiency, including device fabrication, char-
acterization, data processing, and prediction of parameter sets for subsequent iterations. D) Final attainment of optimized parameter sets for device
fabrication.
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focus on efficiency metrics such as power conversion efficiency
(PCE), fill factor (FF), open-circuit voltage (Voc), and short-circuit
current (Jsc), as shown in Figure S4 (Supporting Information).
The resulting dataset is categorized and fed into the BO model
to guide the next round of experiments. This iterative process
refines the model’s understanding of the relationship between
process parameters and device performance.
The BO model was implemented using our home-developed

open-source BO package BOAR.[46–48] BOAR integrates a simpli-
fied common interface for BO procedures from scikit-optimize
and Ax/BOTorch frameworks,[49–51] complemented by custom
utilities for analyzing solar energy material data and modeling.
In this work, the “fully-Bayesian” procedure from Ax was used.
This procedure enables a more accurate surrogate model thanks
to the BO with sparse axis-aligned subspace method.[52,53] This
procedure has been shown to provide a better fitting of the sur-
rogate model thanks to improved hyperparameter tuning, lead-
ing to more robust optimization results. A Gaussian process re-
gression (GPR) model with a Matern kernel was chosen as the
surrogate function, and expected improvement (EI) was used as
the acquisition function. At each iteration, the acquisition func-
tion predicted the parameter sets with the highest expected gain,
enhancing the efficiency of the optimization process. The BO
model systematically processed and analyzed the obtained data
to predict the performance of unexplored parameter combina-
tions. Armed with these predictions, the model then strategically
selected new parameter combinations for experimental valida-
tion in subsequent iterations. Through multiple iterations, this
systematical optimization process incrementally narrowed down
the parameter space and ultimately converged on the most op-
timal conditions to maximize the efficiency of the perovskite
device.

2.3. Autonomous Optimization Experimentation

The density plots of 2D partial dependence in Figure 3 visually
depict the multidimensional parameter space exploration con-
ducted using the BO model. These plots illustrate the model’s
sampling concentration across the parameter pairs and reveal
regions where more iterations were allocated. Such focused ex-
ploration highlights potential synergies between parameters that
could enhance device performance. Histograms along the di-
agonal of the matrix show the distribution of sampled values
for each parameter. Peaks in these histograms indicate higher
sampling frequencies, suggesting areas where the model pre-
dicts a higher likelihood of achieving optimal outcomes. To-
gether, the density plots and histograms showcase the algo-
rithm’s capability to intelligently navigate the multidimensional
space, iteratively refining its search based on performance feed-
back to identify themost promising regions for enhancing device
efficiency.
Figure 4 presents the influence of various process parameters

on device performance. The bar charts qualitatively depict the rel-
ative importance of process parameters, referred to as “feature
importance,” derived from the statistical analysis of data point
dispersion. Higher feature importance values indicate a relatively
greater impact on performance. In Figure 4A, the feature impor-
tance of the process parameters on PCE is presented. Among the

evaluated parameters, the initial spin speed (spin speed 1) has the
most significant impact on PCE. Other parameters, such as the
spin speed during the second step (spin speed 2) and the drip-
ping speed of the organic ammonium halide solution (dripping
speed), also show high feature importance, with values close to
0.8 and slightly below 0.5, respectively. These findings emphasize
their crucial roles in fine-tuning device efficiency. Conversely, the
duration of the initial spin (spin duration, t1) and the spin speed
during the HTL deposition (spin speed 3) exhibit lesser impacts,
while the duration after solution dripping (spin duration, t3) has
minimal influence, with a feature importance value below 0.2.
For FF, as shown in Figure 4B, spin speed 1 remains the most
influential parameter, underscoring its critical role in optimiz-
ing the device FF. For Jsc (Figure S5, Supporting Information),
spin speed 2 emerges as the most impactful parameter, closely
followed by spin speed 1. Regarding Voc, as shown in Figure S6
(Supporting Information), the feature importance ranking mir-
rors that for PCE, although the variations between parameters
are less pronounced.
The feature importance of spin speed 1 for Voc and FF is un-

derstandable, as this parameter directly impacts the thickness of
the PbI2 layer and the amount of residual solvent, both of which
are crucial for the subsequent reaction with FAI.[54] These factors
play a significant role in determining the crystallization process
and, consequently, the overall quality of the perovskite film.How-
ever, the complexity of the parameter space introduces challenges
that cannot be fully understood or optimized without deeper in-
sights into the underlyingmechanisms. The BOmodel addresses
this limitation effectively by functioning as a “black box,” which
analyzes input and output data without relying on specific mech-
anistic assumptions.[28,37,55]

To better visualize the influence of process parameters on de-
vice performance, correlation analysis between these parame-
ters and performance metrics was performed using scatter plots
and trend lines. Figure 4C and Figure S7 (Supporting Informa-
tion) show the relationship between PCE and individual pro-
cessing parameters. This relationship was modeled using a GPR
surrogate projected into 1D to analyze the influence of a sin-
gle parameter while maintaining optimal conditions for the oth-
ers. PCE exhibits a nonlinear relationship with spin speed 1,
where an optimal speed (e.g., 1500 rpm) maximizes PCE before
it declines at higher speeds. Spin speed 2 shows a more com-
plex nonlinear trend, increasing efficiency to a certain thresh-
old before leveling off. In contrast, spin duration t1 demon-
strates a weak correlation with efficiency, with shorter spin times
(e.g., 15–20 s) proving more favorable. The relationship between
dripping speed and PCE highlights stabilization at relatively
higher speeds (e.g., 250 µL s−1) after fluctuations at lower speeds.
This trend diverges from observations made using the OVAT
method,[44] highlighting the limitations of OVAT in capturing
the multifaceted interactions within the parameter space. These
findings emphasize the intricate interplay between parameters,
where optimal values are often nonintuitive and influenced by
interactions with other variables. Such complexity validates the
advantages of employing an autonomous approach for global
optimization.
Figure 4D presents the relationship between FF and spin

speeds during perovskite processing, revealing nonlinear
correlations. For spin speed 1, a distinct peak is observed
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Figure 3. Interactive density plots of 2D partial dependence during parameter space exploration using the autonomous framework.

where FF is maximized at a specific speed. For spin speed 2,
FF initially increases with higher speeds but then gradually
decreases, although the decline is less pronounced than the
sharp peak observed for spin speed 1. Figures S8–S10 (Sup-
porting Information) further detail the relationship between
process parameters, and the FF, Voc, and Jsc metrics of perovskite
devices, respectively. The trends of Voc closely mirror those of
PCE, with significant fluctuations in response to parameter
changes. The wide spread of data points indicates that Voc is
highly sensitive to these parameters, where even minor ad-
justments can lead to substantial variations. Conversely, the

influence of process parameters on Jsc is minimal, with flat
trends and only slight fluctuations being observed across a
broad range of settings. These results collectively underscore the
critical importance of prioritizing speed parameters during the
spin-coating process to optimize device performance. Precise
control of spin speeds is essential for achieving high-quality
perovskite films. Additionally, the precursor dispensing speed
and the initial spin duration emerge as pivotal control param-
eters. This further highlights the necessity for precise control
of these fabrication steps to maximize the performance of
PSCs.

Adv. Energy Mater. 2025, 15, 2404957 2404957 (5 of 9) © 2025 The Author(s). Advanced Energy Materials published by Wiley-VCH GmbH
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Figure 4. Impact of process parameters on device performance. A) Feature importance of six process parameters influencing the PCE of perovskite
devices. B) Feature importance of six process parameters affecting the FF of perovskite devices. C) Scatter plot illustrating the relationship between PCE
and spin speeds (spin speed 1 and spin speed 2) during perovskite processing. D) Scatter plot of the relationship between FF and spin speeds (spin
speed 1 and spin speed 2) during perovskite processing.

2.4. Results of the Autonomous Optimization

Figure 5 presents the experimental result obtained through the
autonomous optimizationmethod. In Figure 5A, the evolution of
device efficiency is depicted across iterative optimization rounds.
Starting from a complex multidimensional parameter space, the
autonomous framework rapidly identified optimal conditions to
maximize the perovskite device performance. Out of 77 exper-
imental trials, each trial represents a unique set of process pa-
rameters or specific fabrication processes involving six selected
variables and several fixed parameters, significant performance
improvements were achieved. These results indicate the model’s
high efficacy in navigating the parameter space and its ability to
intelligently select promising conditions without requiring ex-
haustive testing. During the optimization process, a noticeable
hysteresis phenomenon was observed in the J–Vmeasurements
of devices fabricated in different rounds. This effect, which is
commonly seen in regular-structured PSCs, led to differences
in efficiency values between forward and reverse scans (see de-
tailed J–V curves in Figure S11 in the Supporting Information).
To ensure the robustness and practicality of the optimization
outcome, the reverse scan results were selected as the primary
benchmark for determining device performance. For this opti-
mization process, performance benchmarks were set to classify

the resulting devices. Devices with extremely abnormal Voc, Jsc,
or near-zero efficiency were excluded from the analysis to main-
tain accuracy (Figure S12, Supporting Information). Devices with
an efficiency above 23% were categorized as “good performers,”
while those achieving a PCE exceeding 23.5% were classified as
“top performers.” Among the explored parameter sets, five pro-
duced “good performers,” and notably, one set yielded a “top per-
former” (Table 2). As shown in Figure 5B, the device fabricated
using the optimized parameter set achieved a champion PCE of
23.73%, with a Voc of 1.16 V, a Jsc of 25.7 mA cm−2, and an FF
of 0.79. This outstanding performance is particularly remarkable
given that no additives and passivation were used in perovskite
processing. In comparison, the reference device fabricated us-
ing the conventional OVAT or step-by-step optimization method
exhibited a best PCE of 22.0% (Figure 5C). The external quan-
tum efficiency (EQE) spectrum, presented in Figure S13 (Sup-
porting Information), confirms that the integrated current den-
sity aligns closely with the values derived from the J–V curve,
with only a slight deviation. The reproducibility of device perfor-
mance is evidenced by the J–V curves of six cells and repeated
experiments (Figure S14, Supporting Information), which show
negligible performance variation. This consistency underscores
the reliability of the fabrication process and the stability of the
device outputs under tested conditions. Figure 5D presents a
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Figure 5. Result of the autonomous optimization experimentation. A) Evolution of device efficiency across three rounds of the iterative optimization
process. B) J–V curves of the device fabricated using the optimized parameter set. The inset shows the detailed performance metrics. C) Comparison of
J–V curves for champion cells fabricated under optimized parameters using the OVAT method and the autonomous optimization method. D) Summary
of state-of-the-art air-processed perovskite devices fabricated with and without (w/o) additives in the perovskite formulation.

summary of state-of-the-art air-processed perovskite devices with
or without additives in the perovskite formulation. Notably, the
efficiency achieved in our study ranks among one of the best re-
ported for air-processed PSCs without additives (Table S2, Sup-
porting Information). This achievement highlights the efficacy
of the autonomous optimization framework in enhancing PSC
performance under ambient conditions.

3. Summary and Outlook

In this study, we introduce an autonomous framework by inte-
grating an automated platformwith anML algorithm to optimize
the fabrication process of air-processed perovskite solar cells.
Through autonomous exploration of a 6D parameter space, this
framework efficiently identified optimal parameter sets within
just 77 experimental trials, yielding additive- and passivation-
free PSCs with efficiencies of up to 23.7% under ambient condi-
tions. In comparison, the best efficiency achieved using the tra-
ditional optimization method was limited to 22.0%. Feature im-
portance analysis revealed that the spin speeds during the first
and second steps are critical to device performance and should
be prioritized during optimization. These findings demonstrate

the superiority of the autonomous framework over traditional
methods, which often struggle with exploring multidimensional
spaces and are prone to suboptimal local maxima. By reducing
dependence on extensive domain-specific knowledge and shift-
ing the focus from local to global optimization, this approach not
only improves device performance but also makes the optimiza-
tion process more resource efficient and accelerates the discov-
ery of optimal manufacturing conditions. Integrating intelligent

Table 2. Process parameter sets for devices classified as “good perform-
ers”.

Process
variable

Spin
speed
1 [rpm]

Spin
duration
t1 [s]

Spin
speed
2 [rpm]

Dripping
speed
[µL s−1]

Spin
duration, t3

[s]

Spin
speed
3 [rpm]

1 925 22 2808 268 5 2000

2 1474 14 2324 250 19 3910

3 1515 16 2676 269 6 3552

4 1165 23 2063 241 32 2863

5 1096 20 2295 247 17 2231

Adv. Energy Mater. 2025, 15, 2404957 2404957 (7 of 9) © 2025 The Author(s). Advanced Energy Materials published by Wiley-VCH GmbH
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algorithms with automated experimentation demonstrates the
transformative potential for rapidly achieving high-performance
semiconductor devices and beyond.
Looking ahead, we aim to establish a self-driving Autonomous

Material and Device Acceleration Platforms (AMADAP)
laboratory.[56,57] This state-of-the-art laboratory, powered by
advanced Artificial Intelligence tools, will focus on further
advancing the autonomous discovery and development of
functional energy materials, pushing the boundaries of intelli-
gent material and device research.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
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