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A B S T R A C T

The multi-echo neurite orientation dispersion and density imaging (MTE-NODDI) model has been proposed to 
overcome one of the shortcomings of conventional NODDI, namely the echo time (TE) dependence of the 
compartmental signal fractions, which stems from the intrinsic differences in the compartmental transverse 
relaxation times (T2). However, the model continues to be constrained by the limitation of having a fixed, brain- 
wide intrinsic diffusivity, d.

The primary aim of this work is to assess the benefits and shortcomings of using MTE-NODDI to investigate the 
diffusion and T2 properties of ischaemic stroke tissue following middle cerebral artery occlusion (MCAo) in rat 
models. Given the known alterations in the diffusion properties in ischaemic tissue, a secondary aim is to assess 
an estimation approach for MTE-NODDI parameters that enables d to be released while also mitigating the 
consequent model degeneracy. Using the MTE-NODDI parameters, the spatiotemporal evolution of diffusion and 
T2 properties in ischaemic tissue was characterised from day one to day 23 post-MCAo. The proposed approach 
enables access to several unique tissue features that would otherwise be obscured by the conventional approach. 
Importantly, a marked reduction in d was observed, leading to significant changes in other MTE-NODDI pa
rameters compared to the model employing a fixed d. The isotropic signal fraction displayed a significant in
crease in ischemic tissue, which appears in contradiction with previous works. Regarding the intra- and extra- 
neurite T2 values, T2,in and T2,en, a significant increment was observed at the ischaemic tissue, while the con
dition T2,in ≥ T2,en displayed a tendency to hold in both tissue types. More generally, some parameters, such as 
the isotropic signal fraction, the intrinsic diffusivity and both compartmental T2 values, display unique, het
erogeneous spatiotemporal evolution, where the core and border zones of the ischaemic tissue show different 
behaviours. Overall, the newly estimated parameters show greater consistency with analogous estimates re
ported by published models, and are anticipated to significantly enhance the understanding of tissue properties 
following ischaemic stroke.

Abbreviation: NODDI, neurite orientation dispersion and density imaging; TE, echo time; MTE, multi-echo time; MCAo, middle cerebral artery occlusion; DW, 
diffusion-weighted; T2W, transverse-relaxation-weighted; WM, white matter; GM, grey matter; ODI, orientation dispersion index; TR, repetition time; FOV, field of 
view; MSE, mean squared error; DTIT2, diffusion tensor imaging with explicit account for T2 relaxation; ROI, region of interest; FA, fractional anisotropy; SEM, 
standard error of the mean; AD, axial diffusivity; RD, radial diffusivity; SNR, signal-to-noise ratio; MD, mean diffusivity; CSF, cerebrospinal fluid; DKI, diffusion 
kurtosis imaging.
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1. Introduction

Diffusion-weighted (DW) and transverse-relaxation-weighted (T2W) 
MRI are two of the most widely used modalities for characterising brain 
tissue from the hyperacute to the chronic phases of ischaemic stroke. DW 
MRI, in particular, has become the preferred method for spatial local
isation and assessment of the ischaemic zone during the hyperacute and 
acute phases due to its exquisite sensitivity to microstructural changes 
following stroke onset, such as the formation of cytotoxic oedema, 
changes in membrane permeability, neurite beading and tissue vacuo
lation (Budde and Frank, 2010; DiBella et al., 2022; Farrher et al., 2021; 
Grinberg et al., 2014, 2012; Hui et al., 2012b, 2012a; Jensen et al., 2011; 
Knight et al., 1991; Lätt et al., 2009; Moseley et al., 1990; Sotak, 2002). 
Moreover, the conventional transverse relaxation time (T2) has been 
shown to be sensitive to mechanisms such as vasogenic oedema, the 
increase in the binding of free water by degraded supramolecular 
structures and tissue liquefaction (Carano et al., 2000; Knight et al., 
2016; Lin et al., 2002; Lin et al., 2002; Ordidge et al., 1991; Wagner 
et al., 2012). However, the relation between these mechanisms and their 
manifestation in the spatiotemporal dynamics of DW and T2W MRI 
biomarkers remains a topic of debate.

Among the various biophysical models for DW MRI signal, neurite 
orientation dispersion and density imaging (NODDI) has been widely 
used in the literature due to its enhanced sensitivity to tissue micro
structural features, such as neurite density (or signal fraction) and 
orientation dispersion, and its clinically practicable scan times (Kamiya 
et al., 2020; Zhang et al., 2012). NODDI has been applied in a wide range 
of studies, including those on Alzheimer’s (Colgan et al., 2016) and 
Parkinson’s (Kamagata et al., 2016) diseases, multiple sclerosis (Crombe 
et al., 2018) and traumatic brain injury (Gazdzinski et al., 2020).

In the NODDI model, the total DW MRI signal is expressed as the sum 
of three non-exchanging compartments, namely, the isotropic (or free) 
water, and the intra- and extra-neurite (axons and dendrites) compart
ments. It further assumes that the axial, intra- and extra-neurite diffu
sivities are equal, normally referred to as intrinsic diffusivity (Guerrero 
et al., 2019). Moreover, the radial diffusivity in the extra-neurite 
compartment is assumed to be linked to the axial diffusivity and the 
intra-neurite signal fraction via a tortuosity model (Szafer et al., 1995; 
Zhang et al., 2012). Critically, in order to address the degeneracy in 
NODDI parameter estimation, the intrinsic diffusivity, d, is conven
tionally fixed to a brain-wide value typically set at 1.7 μm2/ms (Zhang 
et al., 2012). However, this value is known to be an approximation and is 
only optimised for white matter (WM), whereas other values have been 
suggested for grey matter (GM), d = 1.1 μm2/ms (Fukutomi et al., 2018), 
or post mortem rat brain tissue, d = 1.2 μm2/ms (Crombe et al., 2018). 
More generally, previous studies have questioned the validity of 
assuming a fixed d value across the brain. For example, Guerrero et al. 
(2019) proposed a voxel-wise estimation framework where the optimal 
d was determined by first evaluating the model square residuals for a 
range of plausible d values and subsequently performing a linear search 
along the d-dimension. Their results showed that d is indeed spatially 
dependent and, as a consequence, restricting it to a fixed value for the 
whole brain can lead to a bias in the other NODDI parameters. Similarly, 
Howard et al. (2022) estimated the axial intra-neurite diffusivity in WM 
by using high diffusion weightings (b-values) to suppress the signal of 
the extra-neurite compartment, and revealed that even within WM, the 
intra-neurite diffusivity is spatially dependent, with values reaching 
~2.4 μm2/ms. Crucially, the compartmental diffusivities have been 
shown to significantly change in ischaemic tissue using similar models 
(Hui et al., 2012b; Kellner et al., 2022), whereas a reduction in the 
intra-neurite diffusivity has been predicted by a theoretical model 
(Budde and Frank, 2010) built on experimental evidence. Furthermore, 
in a recent work (Farrher et al., 2023), the authors demonstrated that 
fixing d to a value significantly greater than the underlying substrate 
may subsequently lead to biologically implausible values for the 
intra-neurite signal fraction. Hence, the several works devoted to 

investigate ischemic stroke with conventional NODDI in the literature, 
both in human and preclinical studies (Adluru et al., 2014; Bagdasarian 
et al., 2021; Caverzasi et al., 2016; Hodgson et al., 2019; Kamiya et al., 
2020; Mastropietro et al., 2019; Wang et al., 2019; Wang et al., 2021), 
may entail, in spite of the reported sensitivity, jeopardised specificity.

Another limitation of multi-compartment DW MRI models, such as 
NODDI, is the echo time (TE) dependence of the compartmental signal 
fractions. This stems from the intrinsic differences in compartmental T2 
values, coupled with the use of single-TE experiments (Benjamini and 
Basser, 2017; Collier et al., 2018; Farrher et al., 2020; Gong et al., 2020; 
Lampinen et al., 2019; Veraart et al., 2017). For example, cerebrospinal 
fluid (CSF) is known to have T2 values significantly larger than those of 
tissue, which leads to an overestimation of the free-diffusion water 
fraction in various models (Bouyagoub et al., 2016; Collier et al., 2018; 
Farrher et al., 2021, 2020; Pasternak et al., 2009). Similarly, the 
intra-neurite T2 is generally larger, though to a lesser extent, than that of 
the extra-neurite compartment in WM (Benjamini and Basser, 2017; 
Gong et al., 2020; McKinnon and Jensen, 2019; Peled et al., 1999; 
Veraart et al., 2017). Conversely, the distinction in GM remains an area 
of debate (Benjamini and Basser, 2017; Dortch et al., 2010; Gong et al., 
2020). To overcome the drawback of the TE-dependence, several works 
have used two-dimensional, DW and T2W, experiments enabling the 
disentanglement of the T2W and the non-T2W model parameters 
(Collier et al., 2018; Farrher et al., 2020; Gong et al., 2020; Lampinen 
et al., 2019; Peled et al., 1999; Veraart et al., 2017). The use of 
two-dimensional experimental protocols such as these has been shown 
to not only provide TE-independent compartmental signal fractions, but 
also to offer mitigation to the degeneracy in parameter estimation 
(Collier et al., 2018; Gong et al., 2020; Jelescu et al., 2016; Veraart et al., 
2017). In a recent work, Gong et al. (2020) demonstrated that the 
extension of conventional NODDI to handle DW and T2W data (i.e. 
multi-echo (MTE)-NODDI) can be readily achieved by incorporating the 
compartmental T2-dependence into the model and performing the 
parameter estimation via a multi-step fitting approach. Nonetheless, 
MTE-NODDI still has the persisting limitation of the fixed intrinsic 
diffusivity as it is fundamentally based on conventional NODDI. That 
being said, preliminary results using MTE-NODDI with fixed d (Farrher 
et al., 2023) in stroke cases suggest that the compartmental T2 values 
also differ in ischemic tissue, hence highlighting the need for further 
investigations.

The primary aim of this study is to assess the benefits and limitations 
of MTE-NODDI in the investigation of diffusion and T2 properties of 
ischaemic stroke following middle cerebral artery occlusion (MCAo) in 
the rat brain. Furthermore, given that the intrinsic diffusivity is expected 
to be altered in ischaemic tissue (Budde and Frank, 2010; Kamiya et al., 
2020; Lampinen et al., 2021; Novikov et al., 2019), our secondary goal is 
to assess an estimation approach for MTE-NODDI parameters that allows 
the intrinsic diffusivity to be released whilst mitigating the model de
generacy. The proposed estimation approach differs from the original 
work by Gong et al. (2020) in three key aspects: i) the intrinsic diffu
sivity is released, ii) the TE-dependent, conventional NODDI parameters 
are estimated for all TEs simultaneously, and iii) the intrinsic diffusivity 
and the orientation dispersion parameter are directly obtained as 
TE-independent parameters.

This study is organised into two main parts. In the first part, the use 
of the l2-norm regularisation in the estimation of MTE-NODDI parame
ters with released d is investigated, with the optimal regularisation 
parameter being determined via the L-curve method. The second part of 
this work is devoted to the investigation of diffusion and T2 properties in 
rat ischaemic tissue by means of the MTE-NODDI model with released d. 
In particular, we assess the spatiotemporal evolution of the novel con
trasts achieved by releasing d, and by the intra- and extra-neurite 
relaxation times from the late acute to the chronic phases of stroke. 
Finally, we discuss the newly estimated MTE-NODDI parameters in light 
of the current related literature and their biophysical interpretation.
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2. Materials and methods

2.1. Background

MTE-NODDI is a multi-compartment model of diffusion and T2 that 
extends the conventional NODDI (Zhang et al., 2012) to account for 
differences in the compartmental T2 (Gong et al., 2020). In brief, let us 
assume that a conventional NODDI protocol has been executed for NT2W 
different TE values. Then, the DW and T2W signal for the ith TE 
(i= 1,…,NT2W) can be written as:  

where b is the b-value and q is the direction of the diffusion-encoding 
field gradient. The compartment-specific signals are: Siso = e− bdiso , 

with diso = 3 μm2/ms; Sen = e− bqT
( ∫

W(n;μ,κ)Di(n)dn
)

q, where Di(n)

= d
[
fin,innT +

(
1 − fin,i

)
I
]

is the extra-neurite diffusion tensor, d is the 

intrinsic diffusivity, and I the 3 × 3 identity matrix; and Sin =
∫

W(n; μ,

κ)e− bd(qTn)
2

dn. In the equations for Sen and Sin, the integral is performed 
over the unit sphere and W(n; μ, κ) denotes the Watson distribution for a 
gradient direction n, given the concentration parameter κ ∈ [0,∞)

–which is additionally related to the orientation dispersion index ac
cording to ODI = 2arctan(1 /κ)/π ∈ [0,1] (Zhang et al., 2012)– and the 
mean orientation vector, µ, which can be set equal to the principal 
eigenvector of the standard diffusion tensor (Daducci et al., 2015). The 

vector θi =
{

S0,i, fiso,i, fin,i, κ, d
}

contains the model parameters, where 

the TE-dependent parameters are the non-DW signals, S0,i, and isotropic 
and intra-neurite signal fractions, fiso,i and fin,i. The TE-independent 
parameters are κ and d. In conventional NODDI, d is fixed to 1.7 
μm2/ms for the whole brain (Zhang et al., 2012). However, here, it is 
included in the definition of θi because we aim to release it.

The TE-dependent compartmental fractions, fin,i and fiso,i, relate to 
their TE-independent counterparts, fin,0 and fiso,0, according to (Gong 
et al., 2020): 

fin,i =
fin,0eTEiΔR2,en− in

fin,0eTEiΔR2,en− in +
(

1 − fin,0

)

and 

fiso,i =
fiso,0eTEiΔR2,in− iso

fiso,0eTEiΔR2,in− iso +
(

1 − fiso,0

)
fin,0

/
fin,i

, (2) 

where ΔR2,en− in = 1/T2,en − 1/T2,in and ΔR2,in− iso = 1 /T2,in − 1 /T2,iso, 
and T2,in, T2,en and T2,iso denote the intra-neurite, extra-neurite and 
isotropic T2 times, and TEi is the ith echo time.

The MTE-NODDI method as proposed by Gong et al. (2020), aims to 
estimate the parameters fiso,0, fin,0, ODI, T2,in and T2,en in a multi-step 
manner, which is summarised as follows: 

i. Estimate fin,i, fiso,i and ODI independently for each DW dataset 
linked to each TE (Eq. (1)). Note that given its TE-independence, ODI 
is evaluated as the arithmetic mean of the ODI values estimated for 
all TEs;
ii. estimate ΔR2,en− in and fin,0 from the slope and intercept of 

ln
fin,i

1 − fin,i
= TEiΔR2,en− in + ln

fin,0

1 − fin,0
(3) 

iii. estimate ΔR2,in− iso and fiso,0 from the slope and intercept of 

ln
fin,0fiso,i

fin,i

(
1 − fiso,i

) = TEiΔR2,in− iso + ln
fiso,0

1 − fiso,0
(4) 

iv. estimate T2,in from the slope of 

ln
[
Si(b=0)fin,i

(
1 − fiso,i

)]
= −

TEi

T2,in
+ lnSin,0 (5) 

v. calculate T2,en based on the definition of ΔR2,en− in.

Notice that T2,iso may also be estimated (Gong et al., 2020). However, 
due to the experimental design utilised in the present study, its esti
mation is highly unstable, and it is therefore excluded from further 
discussions.

2.2. Animals

All animal procedures were as described in (Farrher et al., 2021) and 
were approved by the Institutional Animal Care and Use Committee at 
the National Health Research Institutes (Taiwan). Adult male 
Sprague-Dawley rats (BioLASCO, Taipei, Taiwan), weighing 300–400 g, 
were anaesthetised with chloral hydrate (0.4 g/kg, intraperitoneal in
jection, Sigma-Aldrich). The right middle cerebral artery (MCA) was 
ligated with a 10–0 suture (N-2540, Monosof TM Covidien, Minneapolis, 
MN, USA), and common carotid arteries were clamped bilaterally using 
non-traumatic arterial clips, together efficiently reducing > 80 % blood 
flow in the MCA. As a result, focal ischaemia in the cerebral cortex is 
induced, as described previously (Chen et al., 1986; Liu et al., 2011; Yu 
et al., 2020). The ligature and clamps were removed after 90 min to 
generate reperfusion injury. Core body temperature was monitored and 
maintained at 37 ◦C by a heating pad during surgery. After recovery 
from the anaesthesia, the body temperature was maintained at 37 ◦C 
using a temperature-controlled incubator. A custom-made rat head 
holder and a circulating heated water bath were used. All rats were 
anaesthetised with 1–2 % isoflurane in oxygen during the MRI scans. 
Respiration was kept at 40–50 breaths per minute, and body tempera
ture was maintained at 37 ◦C. This was monitored using a small animal 
physiological monitoring and control unit (SA Instruments, Stony Brook, 
NY).

Two sets of animals were measured, each set having different time 
points. For the first set, rats were subjected to longitudinal MRI exper
iments, including measurements prior to MCAo (5 rats) and on days 1 
(3), 2 (3) and 23 (4) after MCAo. For the second set, the MRI experiments 
were performed prior to MCAo (6 rats) and on days 1 (4), 3 (4), 4 (4), 5 
(4), 6 (4), 7 (4) and 10 (4).

2.3. MRI experiments

The experimental protocol was followed as described elsewhere 
(Farrher et al., 2021). MRI experiments were performed on a 
home-integrated, translational 3T MRI scanner equipped with an 
ultra-high-strength gradient system (maximum strength of 675 mT/m) 
(Cho et al., 2019). A custom-built, single-loop transmit/receive surface 
coil was utilised. A Stejskal-Tanner segmented echo-planar imaging 

Si(b,q; θi) = S0,i

[
fiso,iSiso(b) +

(
1 − fiso,i

)(
fin,iSin(b,q; κ, d) +

(
1 − fin,i

)
Sen

(
b,q; fin,i, κ, d

))]
, (1) 
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pulse sequence was employed with the following parameters: repetition 
time, TR = 9 s; echo time, TE = 50, 100 ms; b-values (directions) = 0 (8), 
0.5 (12), 1.0 (26) and 2.0 (40) ms∕μm2; diffusion gradient separation 
and duration, Δ = 24 ms and δ = 3 ms; field of view, FOV = 25 × 25 
mm2; matrix-size = 96 × 96; voxel-size = 0.26 × 0.26 × 1 mm3; 20 
slices; phase-encoding direction anterior-to-posterior. One extra volume 
with opposite phase-encoding was acquired for the correction of 
susceptibility-induced distortions. A turbo spin-echo sequence was used 
to acquire T2W structural images. The protocol parameters were: TR = 4 
s; TE = 68 ms; 6 repetitions; FOV = 25 × 25 mm2; matrix-size = 192 ×
192; voxel-size = 0.13 × 0.13 × 1 mm3; 20 slices.

2.4. Estimation of MTE-NODDI parameters with released d

Prior to the estimation of the MTE-NODDI parameters, the data were 
denoised as described in (Veraart et al., 2016) and implemented in 
MRtrix (Tournier et al., 2019). Correction of the positive signal bias due 
to its Rician nature was performed following the method by Gudb
jartsson and Patz (1995), using the background noise standard deviation 
obtained at the denoising step (Veraart et al., 2017). Gibbs-ringing 
artefact correction was performed using the approach by Kellner et al. 
(2016), implemented in MRtrix. Susceptibility-induced and 
eddy-current distortions were corrected using topup and eddy, pro
vided by FSL (Andersson et al., 2003; Smith et al., 2004). The remaining 
processing was completed using in-house Matlab scripts (Matlab 2022b, 
The MathWorks, MA, USA).

The approach proposed for the estimation of MTE-NODDI parame
ters in this work refers to step i) in subSection 2.1, whereas steps ii)-v) 
are executed as originally proposed by Gong et al. (2020). In our 
approach, instead of fitting the NODDI signal equation (Eq. (1)) to each 
DW dataset independently, the TE-dependent parameters are simulta
neously estimated for all DW datasets, with κ and d as shared, 
TE-independent parameters. Hence, the cost function to be minimised is 
written as 

F =
∑NT2W

i=1

∑NDW

j=1

[
Si

(
bj,qj; θi

)
− Mi,j

]2
+ λ‖ Ω ‖

2
2, (6) 

where NDW is the number of DW volumes per TE, Mi,j are the signals 

measured at echo time TEi and diffusion weighting settings 
(

bj,qj

)
and 

Ω =
{

S0,1,⋯, S0,NT2W , fiso,1,⋯, fiso,NT2W , fin,1,⋯, fin,NT2W , κ, d
}

is the vector 

containing the 3NT2W + 2 free parameters. The term λ ‖ Ω ‖
2
2 denotes the 

l2-norm regularisation, with λ being the regularisation parameter. For 
the experimental settings in this work, we have NT2W = 2 and therefore 

Ω =
{

S0,1, S0,2, fiso,1, fiso,2, fin,1, fin,2, κ, d
}

. In order to handle the multiple 

TE datasets, the NODDI signal model was implemented in-house using 
Matlab, whereas the function WatsonSHCoeff was borrowed from the 
NODDI Matlab Toolbox (v1.04, http://mig.cs.ucl.ac.uk/index.php?n=T 
utorial.NODDImatlab) (Zhang et al., 2012). Minimisation of Eq. (6) was 
performed using fmincon, available in Matlab.

The advantage of fitting all TE datasets simultaneously is two-fold. 
Firstly, the independence of κ and d on TE can be directly imposed 
during estimation (Eq. (6)), and the need to evaluate ODI and d as an 
arithmetic mean is avoided. Secondly, the following constraints can be 
imposed during minimisation of F: a) S0,i+1 < S0,i (as a result of the 
overall signal transverse relaxation) and b) fiso,i < fiso,i+1, which stems 
from the fact that T2,iso≫T2,in,T2,en (Benjamini and Basser, 2017). 
Conversely, we refrain from imposing fin,i < fin,i+1 because although this 
condition holds true for WM, the case for GM has not yet been estab
lished conclusively (Benjamini and Basser, 2017; Dortch et al., 2010; 
Veraart et al., 2017; Whittall et al., 1997). Other box constraints are: fiso,i,
fin,i ∈ [0, 1]; κ ∈ [0,64] (Jelescu et al., 2016); d ∈ [0.3,3.1] μm2/ms 
(Guerrero et al., 2019). Note also that, given that the global signal 

depends on several hardware-related factors, such as coil sensitivity, 
loading and receiver gain, among others, the signals Mi,j were, before the 
minimisation of Eq. (6), normalised by the corresponding non-DW and 
non-T2W signal, S0, as estimated using conventional DTI with explicit 
account for T2 signal attenuation (DTIT2) (Fan and Does, 2008; Farrher 
et al., 2021; Lampinen et al., 2023). Hence, the global signal intensity, 
and consequently the regularisation parameter, is comparable across 
animals. Moreover, the additional box constraint S0,i ∈ [0,1] can be set. 
The equivalence between the original and the method proposed here for 
step i) in the estimation of MTE-NODDI parameters is shown in sup
plementary material S.1. The initial guess for the model parameters was 
determined based on an analysis of the solution landscape (described 
and discussed in supplementary material S.2) and set to: S0,1 = M1,1, 
S0,2 = M2,1, fiso,1 = 0.05, fiso,2 = 0.1, fin,1 = 0.4, fin,2 = 0.6 and d = 1 
μm2/ms. For the case of κ, the fitting was performed for four different 
initial values: κ = 0.1, 1, 3 and 7, and the solution with the lowest value 
of F was taken as the “best fit” (Jelescu et al., 2016).

2.5. Evaluation of the regularisation parameter

To determine the optimal regularisation parameter, the L-curve cri
terion was employed (Hansen, 2000). This method involves plotting the 
norm of the regularised solution (second term in Eq. (6)) against the 
norm of the residuals (first term in Eq. (6)) in a logarithmic plot. The 
value of λ can then be found at the point at which the L-curve has the 
maximum curvature. Thus, the corner of maximum curvature provides a 
value of λ, for which there is a trade-off between both terms.

To evaluate the L-curve, minimisation of Eq. (6) was first performed 
voxel-wise for 30 values of λ ∈

[
5 ×10− 6,5 ×10− 3] for three slices 

(Bregma 0.48, − 0.48 and − 1.44) in a single animal. Secondly, the cur
vature, c, was evaluated voxel-wise for all values of λ with the help of the 
function LineCurvature2D, available for Matlab (Kroon, 2011), using 

the pair of input variables x = ln ‖ Ω ‖
2
2 and y =

ln
∑NT2W

i=1
∑NDW

j=1

[
Si

(
bj,qj; θi

)
− Mi,j

]2 
(Hansen, 2000). The maximum of 

the curvature was then found voxel-wise via a linear search, and a map 
of the optimal λ was created. Finally, with the purpose of obtaining a 
single value for the whole brain, a histogram of the optimal λ map was 
created and the value of λ for the whole brain was chosen as its peak 
value.

2.6. Data simulation

The precision and accuracy of the MTE-NODDI parameters were 
assessed via simulation for three tissue types: healthy GM and WM, and 
ischaemic GM. The experimental protocol was the same as in the in vivo 
experiments. The ground truth MTE-NODDI parameters were taken from 
50 random voxels in each tissue type. Three estimation approaches were 
considered: the conventional approach employing fixed diffusivity 
(=1.7 μm2/ms), and the unregularised (λ = 0) and regularised (λ = 6 ×

10− 4) cases with released diffusivity. Each of the 50 voxels was simu
lated for 100 Rician noise realisations with SNR = 50, corresponding to 
the typical values observed in our experiments. No data preprocessing 
was performed for the simulated data as in Gong et al. (2020). Subse
quently, the following statistical metrics were computed: the absolute 
bias, b = |E[A] − A0|, where A denotes one of the MTE-NODDI param
eters, A0 its corresponding ground truth, and E[A] the expectation value 
across the noise realisations; the standard deviation, s =

E
[
(A − E[A])2]1/2, and the mean square error (MSE), m = b2 + s2 

(Sijbers and den Dekker, 2004).

2.7. Statistical analysis

Following previous works (Farrher et al., 2021; Lin et al., 2002; 
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Wagner et al., 2012), regions-of-interest (ROIs) covering the cortex on 
the ipsilateral and contralateral hemispheres were manually drawn on 
slices 1 and 2 (Bregma 0.48 mm and − 0.48 mm, respectively (Paxinos 
and Watson, 2004)), using the maps of fractional anisotropy (FA) from 
DTIT2 as a visual guide. The mean and standard deviation of all 
MTE-NODDI parameters were calculated separately for each animal and 
each time point. In the following, the mean and standard deviation of a 
parameter A over a given ROI will be indicated as A and σA, respectively. 
Additionally, the mean, 〈A〉, and the standard error of the mean (SEM) 
over animals were computed and plotted against the time after MCAo. 
Furthermore, the average of the standard deviation across animals, 〈σA〉, 
was also evaluated in order to investigate the temporal evolution of the 
biologically-induced ROI heterogeneity (Wagner et al., 2012). A 
two-tailed paired t-test was utilised to test for significant differences 
between the ipsilateral and contralateral ROIs for each MTE-NODDI 
parameter at each time point. Similarly, a two-tailed paired t-test was 
also employed to investigate the difference between intra- and 
extra-neurite T2 times for each time point.

2.8. Group-wise templates of MTE-NODDI parameters

The spatiotemporal evolution of MTE-NODDI parameters was further 
inspected via the construction of a group-wise template for each time 
point. To this end, a multi-variate template was created with the help of 
the script antsMultivariateTemplateConstruction2.sh avail
able in ANTs (Avants et al., 2011) using the maps of FA, axial (AD) and 
radial (RD) diffusivities, and T2 from DTIT2 as input (Farrher et al., 
2021). Subsequently, the affine transformation (firstly) and the warp 
field (secondly) were applied to all MTE-NODDI maps of each animal. 
Finally, the voxel-wise mean was calculated for each time point. The 
mean values of each MTE-NODDI parameter were calculated prior to 

stroke onset over two ROIs drawn at the cortices and one ROI comprising 
the corpus callosum and the external capsule, for the sake of comparison 
with values previously reported in the literature. Both ROIs were drawn 
over slices 1 and 2. However, we refrain from performing a detailed 
analysis of MTE-NODDI parameters for all anatomical regions within the 
studied slices because of the limited resolution of our imaging protocol 
as well as the low SNR values in the lower part of the brain.

3. Results

The procedure for the evaluation of λ in a rat brain is summarised in 
Fig. 1a-c. Fig. 1a shows the typical L-curve obtained from a single voxel. 
The inset shows the calculated curvature, c, for every point in the L- 
curve, with the maximum value highlighted by the red dot. Fig. 1b 
demonstrates the reconstructed map of the optimal λ for a slice, and 
Fig. 1c shows the corresponding histogram taken over three slices. The 
peak of the histogram is located at λ = 6 × 10− 4, which was used for all 
datasets in the remainder of this work. Plots in Fig. 1d and e display the 
map and histogram of the SNR values, respectively, and Fig. 1f dem
onstrates the two-dimensional histogram of λ versus SNR. The Spear
man’s rank correlation coefficient resulted in r = − 0.46 (p < 10− 10).

Fig. 2 shows the estimated maps of the parameters in the vector Ω, i. 
e. the TE-dependent isotropic (first column) and intra-neurite (second 
column) fractions, the concentration parameter (third column) and the 
intrinsic diffusivity (fourth column) without (i.e. λ = 0 (a)) and with 
regularisation (λ = 6 × 10− 4 (b)). The maps in Fig. 2a show that the 
estimation without regularisation displays, across voxels from similar 
anatomical structures, changes much larger than those expected from 
biological variability. This feature is particularly prominent in the map 
of κ, which displays two distinct sets of solutions: one set characterised 
by κ <

∼
10 (genuine solution) and another where κ ≈ 64 (spurious 

Fig. 1. Application of the L-curve method for the evaluation of the optimal regularisation parameter. (a) L-curve for a representative voxel (inset: point-by-point 
curvature of the L-curve for all λ values). The red dot denotes the point of maximum curvature for this exemplary voxel. (b) A map of the optimal λ for a repre
sentative slice in animal 1. (c) The histogram of the optimal λ taken over 3 slices. The peak of the histogram, located at λ = 6 × 10− 4, is taken as the whole-brain 
optimal regularisation parameter. (d) A map of the SNR values, and (e) the corresponding histogram. (f) Two-dimensional histogram depicting the correlation of λ vs. 
SNR. The Spearman’s rank correlation coefficient resulted r = − 0.46 (p < 10− 10). Notice that, due to the discrete nature of the initial λ range, the map of λ was 
smoothed using a discretised spline smoothing implemented in the Matlab function smoothn (Garcia, 2010), prior to the histogram evaluation.
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solution). Note that the latter κ value simply represents the upper 
boundary typically used in conventional NODDI. The former observa
tion is more evidently revealed by the histogram of each parameter, 
shown at the bottom of panel (a). Here, the yellow lines correspond to 

the voxels where the genuine solution was achieved, whereas the red 
lines refer to the spurious solution. Besides being characterised by large 
κ values (red arrow in Fig. 2a), the spurious solution displays distinct 
peaks at lower values for fin,i and d. For a more detailed analysis of the 

Fig. 2. Comparison of the TE-dependent (fiso,i and fin,i) and TE-independent (κ and d [μm2/ms]) parameters for the case where the estimation was performed without 
regularisation (a), i.e. λ = 0, versus the case where the regularisation was applied (b), i.e. λ = 6 × 10− 4. The maps are shown in the top panels, whereas the 
corresponding histograms, taken over 3 slices are shown in the bottom panels. The maps of κ for the unregularised case (a) were used to create a mask dividing the 
voxels into sets of genuine (κ ≤ 10, yellow lines) and spurious (κ > 10, red lines and red arrow) solutions. The blue lines refer to the whole-slice histograms. The same 
mask was utilised to study the behaviour of both sets of voxels for the regularised case (b).

E. Farrher et al.                                                                                                                                                                                                                                 NeuroImage 318 (2025) 121390 

6 



solution landscape, the reader is referred to supplementary material S.2. 
The large κ values for the spurious voxels suggest that the l2-norm reg
ularisation could be a suitable approach to suppress the solution char
acterised by large κ values. Indeed, no spurious solutions can be 
observed in the maps shown in Fig. 2b, nor in the corresponding histo
grams, where the peaks related to the voxels that showed spurious so
lutions when no regularisation was used (red lines in (a)), appear within 
the range of genuine values when the regularisation was applied (b).

Fig. 3 shows a comparison of the maps of conventional MTE-NODDI, 
i.e. d = 1.7 μm2/ms (top row) and its version with released d (second 
row) for a rat brain one day after stroke. A post-stroke brain was selected 
for this comparison because it was anticipated that the benefit of 
releasing d would be much clearer in ischaemic tissue (Farrher et al., 
2023). For MTE-NODDI with fixed d at the ischaemic tissue, fin,0 tends to 
reach values equal unity which, in turn, translate into artefacts in T2,en as 
a consequence of its estimation method (Eq. (3)). Conversely, when d is 
released, the values of fin,0 at the ipsilateral cortex are < 1 and, as a 
consequence, the estimation of T2,en depicts no artefacts. Note that the 
estimation of both T2 values appears to be highly unstable in low-SNR 
voxels (lower part of the brain) in both cases, implying that the 
release of d is not the main cause for this instability. Similarly, while the 
conventional fiso,0 shows no visible differences between the ipsilateral 
and contralateral sides, its version with released d unmistakably reveals 
an increase in the isotropic water fraction in the whole ischaemic area. 
Moreover, the newly obtained d map not only shows a significant 
dispersion of values between different healthy tissue types, but also 
displays a clear reduction in the ischaemic tissue compared to the 
contralateral part. In terms of T2,in, no visual differences between the 
estimation approaches can be observed in either the maps or the 
histograms.

Fig. 4 demonstrates the scatter plots of the simulated MTE-NODDI 
parameters (ordinates) for WM (a-f), healthy GM (g-l), and ischaemic 
GM (m-r) versus their respective ground truth values (abscissas). Blue 
and red dots refer to the unregularised and regularised cases, respec
tively. The larger, cyan (unregularised case) and orange (regularised 
case) circles display the mean values taken across the noise realisations 
for each of the 50 simulated voxels. In general, for the three tissue types, 
the regularised MTE-NODDI parameters display both lower bias (i.e. 
dots closer to the identity line depicted by the dashed, grey line) and 

standard deviation (i.e. lower dots spread). As expected, the parameter 
most notably affected by the regularisation is κ.

Fig. 5 displays the absolute bias (a-f), the standard deviation (g-l) and 
the MSE (m-r) of MTE-NODDI parameters for each simulated tissue type, 
for the unregularised (blue) and regularised cases (red), as well as for the 
conventional case with fixed d (grey). The height of each bar and error 
bars denote the mean and standard deviation of each metric taken across 
the 50 simulated voxels. The three statistical metrics of all parameters 
for the regularised case are generally reduced, compared to that of the 
unregularised case. The presence of the solution characterised by large κ 
values for the unregularised case is demonstrated by its large bias and 
standard deviation (blue bars in c, i and o).

Figs. 6 and 7 show the spatiotemporal evolution of MTE-NODDI 
parameter maps for a rat in group 1 and a rat in group 2 (one slice, 
Bregma 0.48), respectively, referred to as rat 1 (Fig. 6) and rat 2 (Fig. 7) 
from here onwards. The maps of conventional mean diffusivity (MD), FA 
and T2 estimated using the DTIT2 method and the high-resolution T2W 
images are additionally shown for visual reference. All diffusion- and 
microstructure-related maps are depicted in the topmost panels, 
whereas the relaxation-time-related parameters are depicted in the 
middle panels. In general, all MTE-NODDI maps show not only different 
degrees of contrast between the ischaemic and the contralateral tissue 
but are also heterogeneous and heterochronous.

Besides the typical patterns of increased isotropic fraction at the 
tissue-CSF interface (Collier et al., 2018; Farrher et al., 2021, 2020; 
Pasternak et al., 2009), fiso,0 shows an increment in the ipsilateral cortex 
one day after stroke, with further increments on day two (Figs. 6 and 7). 
From day three onwards, the distribution of fiso,0 over the ischaemic 
cortex becomes more heterogeneous (Fig. 7), with the core of the 
ischaemic zone displaying a different behaviour compared to the border 
zone. In contrast, the intra-neurite fraction shows only a slight increase 
one day after stroke but retracts to visually normal values from day three 
onwards. Finally, fin,0 tends to reduce further below normal values be
tween days 10 and 23. The values of ODI display a large increment on 
day one after stroke, which remains elevated until day 23 when the 
values appear to downtrend (Fig. 6). The value of d is homogeneously 
reduced on days one and two after stroke (Figs. 6 and 7). From day three 
onwards, it remains abnormally low at the core zone but tends to rise 
above normal values at the inner border zone (Fig. 7). This feature is 
particularly difficult to perceive, because its adjacent external capsule 

Fig. 3. A comparison of MTE-NODDI maps, between the conventional approach where the intrinsic diffusivity is set to d = 1.7 μm2/ms (top row), and the approach 
proposed in this work, where d is released, with regularisation parameter λ = 6 × 10− 4 (middle row). The corresponding histograms are shown in the bottom row. 
Notice that an animal was chosen on day 1 post-stroke in order to emphasise the strong limitations of conventional MTE-NODDI with fixed d in voxels in ischae
mic tissue.
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shows similar d values. However, if MD and FA are used as a visual 
guide, the elevated d values at the inner border zone become more 
evident, as seen by the different spatial thicknesses of that region at the 

different maps (magenta arrows in Fig. 7). Finally, by day 23, the values 
of d are well above normal values.

The relaxation times T2,in and T2,en both rose on day one after stroke, 

Fig. 4. Scatter plots of the simulated MTE-NODDI parameters (ordinates) for WM (a-f), healthy GM (g-l), ischaemic GM (m-r) versus their respective ground truth 
values (abscissas). Blue and red dots denote the unregularised and regularised cases, respectively. The larger, cyan (unregularised case) and orange (regularised case) 
dots display the mean values taken across the noise realisations for each of the 50 simulated voxels. The dashed, grey lines denote the identity line. Notice the 
logarithmic scales in the plots of κ (c, i, o), set for the sake of better visualisation.

Fig. 5. Plots of the absolute bias (a-f), the standard deviation (g-l) and the MSE (m-r) of the MTE-NODDI parameters for each simulated tissue type, for the 
unregularised (blue) and regularised cases (red), as well as for the conventional case with fixed d (grey). The height of each bar and the error bars denote the mean 
and standard deviation, respectively, of each metric taken across the 50 simulated voxels. Note that the ordinate axes for metrics κ, T2,in and T2,en were set to 
logarithmic for the sake of better visualisation. hGM: healthy GM; iGM: ischaemic GM.

E. Farrher et al.                                                                                                                                                                                                                                 NeuroImage 318 (2025) 121390 

8 



although different degrees of heterogeneity between rats 1 and 2 can be 
observed. Starting on day two, T2,in and T2,en show a spatiotemporal 
evolution which is different between the core and the inner border zone. 
At the core area, both relaxation times tend to renormalise between days 
one and six but do not reach the normal contralateral values. From day 
seven onwards, the values of T2,in and T2,en at the core zone start 
increasing again. Conversely, both relaxation times at the inner border 
zone tend to increase starting on day two and reach a maximum at 
around days four and five. Between days six and seven, T2,in decreases, 
whereas T2,en remains elevated. Finally, at days 10 and 23, both relax
ation times show a lower spatial heterogeneity with larger-than-normal 
values.

Fig. 8 shows the template maps of all the MTE-NODDI parameters 
obtained by averaging the maps from all animals within every time point 
(Bregma 0.48). In general, all template maps resemble analogous 
spatiotemporal behaviour as the MTE-NODDI maps for single rats. 
Interestingly, the heterogeneity patterns of T2,in and T2,en during all 
phases of stroke appear more similar to that of fiso,0, where the ischaemic 
core evolves differently compared to the border zone. In contrast, the 
parameters fin,0 and ODI show a less heterogeneous distribution 

throughout the investigated time frame. As a reference for the healthy 
tissue, the mean values calculated for the ROIs at the cortex before 
stroke were: fiso,0 = (0.006 ± 0.009); fin,0 = (0.33 ± 0.04); ODI = (0.37 

± 0.07); d = (1.17 ± 0.08) μm2/ms; T2,in = (68 ± 3) ms and T2,en = (64 

± 2) ms. For the WM ROI: fiso,0 = (0.009 ± 0.010); fin,0 = (0.61 ± 0.05); 
ODI = (0.22 ± 0.03); d = (2.04 ± 0.20) μm2/ms; T2,in = (62 ± 3) ms and 
T2,en = (50 ± 6) ms.

Fig. 9 illustrates the histograms of the MTE-NODDI parameters taken 
over two slices in a rat from group 1 before stroke (Fig. 9a) and at days 
one (Fig. 9b) and 23 (Fig. 9c) after stroke as examples. The histograms 
were taken over whole slices (blue) and over ROIs covering the ipsi
lateral (red) and contralateral (yellow) cortices. All parameter maps 
before stroke show a unimodal distribution. Conversely, all parameters 
show a bimodal distribution at day one after stroke, where the peak 
related to the ischaemic cortex is shifted towards larger values for fiso,0, 
fin,0, ODI, T2,in and T2,en and towards lower values for d, compared to the 
contralateral cortex. On day 23 after stroke, all parameters again show a 
unimodal distribution, except for fiso,0, which exhibits a broad peak 
shifted towards values much larger than those at the contralateral side. 
Another exception is d, which depicts a shoulder-like shape towards 
values above normal.

The scatter plots shown in Fig. 9a for two whole slices before stroke 
(blue), demonstrate that all MTE-NODDI parameters have different de
grees of correlation with d (see Table 1 for the Spearman’s rank anal
ysis). Before and one day after stroke, fiso,0, ODI, T2,in and T2,en correlate 
negatively with d, whereas for fin,0 that correlation is positive. At day 23, 
the behaviour remains the same, except for fiso,0, which is positively 
correlated with d. For the ROIs drawn in the contralateral cortex (yel
low), only fin,0 and ODI retain the same significant correlation as seen in 
the analysis of whole slices. At the ipsilateral cortex instead (red), we 
observe a significant, negative correlation of fiso,0 and ODI, and a posi
tive correlation of fin,0 and T2,in with d on day one after stroke. Finally, at 
day 23 after stroke, the correlations of fiso,0, T2,in and T2,en turn signifi
cantly positive, whereas the correlation of fin,0 and ODI with d results 
negative.

The group-based ROI analysis of the temporal evolution of the MTE- 
NODDI parameters is presented in Fig. 10. The average across animals 
for both within-ROI mean (Fig. 10a-e) and standard deviation (Fig. 10f- 
j) are shown, along with the error bars indicating the SEM. In general, all 
parameters at the ipsilateral cortex show significant differences 
compared to the contralateral cortex. Moreover, as demonstrated by the 
corresponding standard deviation, the temporal evolution of all pa
rameters shows different degrees of spatial heterogeneity.

4. Discussion

To the best of our knowledge, this study is the first to apply MTE- 
NODDI to investigate the spatiotemporal evolution of diffusion and 
relaxation properties in ischaemic brain tissue following MCAo in rats. 
The study additionally aimed to address a key limitation of MTE-NODDI, 
which requires the intrinsic diffusivity to be fixed at a single, brain-wide 
value in order to mitigate the model degeneracy. In the following, the 
parameters d and ODI will be discussed in light of the current literature, 
irrespective of whether they were estimated using NODDI or MTE- 
NODDI, as they are TE-independent. In contrast, the distinction be
tween NODDI and MTE-NODDI will be made when discussing TE- 
dependent parameters.

4.1. MTE-NODDI parameter estimation with released d

We have observed that simply releasing d leads to a degeneracy in 
the solution landscape, where two sets of solutions were identified: a 
solution set A, characterised by large intrinsic diffusivity, intra-neurite 
fraction and dispersion (small κ), and a solution set B where low 

Fig. 6. Spatiotemporal evolution of MTE-NODDI parameter maps for a rat in 
group 1 (Bregma 0.48) along with MD, FA and T2 maps from the conventional 
DTIT2 method. The top panel depicts the microstructure- and diffusion-related 
maps, the middle panel the relaxation-related maps and the bottom panel the 
high-resolution T2W images. The units for diffusion maps are μm2/ms, while 
the units for relaxation times are ms.
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Fig. 7. Spatiotemporal evolution of MTE-NODDI parameter maps for a rat in group 2 (Bregma 0.48) along with MD, FA and T2 maps from the DTIT2 method. The top 
panel depicts the microstructure- and diffusion-related maps, the middle panel the relaxation-related maps and the bottom panel the high-resolution T2W images. 
The units for diffusion maps are μm2/ms, while the units for relaxation times are ms.

Fig. 8. Spatiotemporal evolution of MTE-NODDI parameter template maps obtained by averaging the maps from all animals within every time point (Bregma 0.48). 
The top panel depicts the microstructure- and diffusion-related maps, and the bottom panel the relaxation-related maps. The units for diffusion maps are μm2/ms, 
while the units for relaxation times are ms.
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intrinsic diffusivity, intra-neurite fraction and dispersion (large κ) were 
observed, which parallel the observations previously made in a similar 
model (Jelescu et al., 2016). Although both solutions are a priori bio
logically plausible, a number of works have favoured the prevalence of 
the solution associated with high dispersion (small κ) over that with low 
dispersion, for the in vivo brain tissue (Jelescu and Budde, 2017; Kunz 
et al., 2018; Szczepankiewicz et al., 2015; Veraart et al., 2017). 
Furthermore, the number of voxels in which solution B is achieved 

represents only ~8 % of the total slice, while this solution does not 
display spatial patterns coinciding with any anatomical region. The 
former arguments support the idea that solution A corresponds to the 
underlying substrate, thus justifying the suppression of solution B by 
adding an l2-norm regularisation term to the least-squares cost function, 
which penalises the solutions characterised by large values of ‖ Ω ‖

2
2, as 

a consequence of large κ values (see supplementary material S.2 for 
more details). In this regard, non-standard regularisation terms, e.g. λκ2, 
could show better performance than the standard approach utilised in 
this work and are, therefore, worth considering in future works.

Note that our approach resembles the method employed by Guerrero 
et al. (2019), in that both approaches rely on a minimisation of the 
square of the residuals, considering d as a variable. However, in contrast 
to the method employed by Guerrero et al. (2019), our approach per
forms the fitting simultaneously in all dimensions rather than using a 
two-step fitting process. Furthermore, our method does not require 
median filtering of the d maps, unlike Guerrero et al. (2019). Addi
tionally, our approach for the estimation of κ and d also differs from that 
proposed by Howard et al. (2022), which relies on experimental data 
acquired at ultra-high b-values (where the signal from the extra neurite 
space can be neglected). Our approach can be applied to experimental 
data measured using medium-range b-values, i.e. <

∼
3.0 ms∕μm2, thus 

enabling wider applicability under conventional experimental settings. 
Moreover, the use of such medium-range b-values makes the estimated 
NODDI parameters less prone to differences in axonal diameter, as 

Fig. 9. Histograms of MTE-NODDI parameters taken over slices 1 and 2 (blue lines) and over ROIs drawn on the contralateral (yellow) and ipsilateral (red) cortices 
for a rat in group 1. Three representative time points were taken as examples: before stroke (a), and 1 (b) and 23 (c) days after stroke. The corresponding scatter plots 
of fiso,0, fin,0, ODI, T2,in and T2,en versus d are additionally shown. The ROIs are shown overlaid to the conventional FA from DTIT2. Only voxels with SNR > 25 were 
considered. Voxels at the CSF-tissue interface located at the ventricles were additionally skipped.

Table 1 
Spearman’s rank correlation analysis of MTE-NODDI parameters versus d for 
two whole slices (ws), ROIs at the ipsilateral (ipsi) and contralateral (ctrl) 
cortices. *, p < 0.05; **, p < 0.001.

fiso,0 vs. d fin,0 vs. d ODI vs. d T2,in vs. d T2,en vs. 
d

pre 
occlusion

ws − 0.07 * 0.84** − 0.65** − 0.38** − 0.19**

​ ipsi - 0.77** − 0.53** - -
​ ctrl - 0.77** − 0.52** - -
day 1 ws − 0.16** 0.44** − 0.79** − 0.49** − 0.39**
​ ipsi − 0.39** 0.61** − 0.52** 0.19** -
​ ctrl - 0.74** − 0.45** - -
day 23 ws 0.24** 0.61** − 0.54** − 0.10** − 0.14**
​ ipsi 0.20 * − 0.47** − 0.14* 0.59** 0.72**
​ ctrl - 0.74** − 0.50** - -
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discussed in other works (Howard et al., 2022; Veraart et al., 2020).
The spatial heterogeneity of d reported here further supports the 

consensus of a tissue-dependent NODDI intrinsic diffusivity (Guerrero 
et al., 2019; Howard et al., 2022). In our work, a mean value of 1.17 
μm2/ms was measured for the healthy cortex, which is within the range 
of approximately [1.0,1.3] μm2/ms observed in some works (Fukutomi 
et al., 2018; Guerrero et al., 2019) based on adult, human GM. 
Conversely, a mean value of 2.04 μm2/ms was measured for WM tissue, 

which is above the range of approximately [1.6,1.8] μm2/ms measured 
by Guerrero et al. (2019), and within the range [2.0,2.5] μm2/ms re
ported by Howard et al. (2022) for adult humans. In this regard, the 
Spearman’s rank correlation analysis showed different degrees of cor
relation between the newly assessed d and the remaining MTE-NODDI 
parameters. Nevertheless, these correlations do not disregard the com
plementary information provided by d, as shown by the rather large 
spread of points in the scatter plots (Fig. 9).

Fig. 10. (a-e) Temporal evolution of the mean, 〈A〉, of MTE-NODDI parameters for ROIs drawn on the contralateral (blue dashed lines, also violet in (e)) and the 
ipsilateral (red solid lines, also yellow in (e)), taken over all animals in groups one and two and all time points. (f-j) Temporal evolution of the average standard 
deviation, 〈σA〉, for each parameter. Error bars denote the SEM. *, # p < 0.05.
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Regarding ODI, previous studies have investigated the correlation 
between the conventional ODI and histological measures (Grussu et al., 
2017; Schilling et al., 2018; Wang et al., 2019). Notably, Schilling et al. 
(2018) showed that, among other MRI-based methods, ODI had the 
strongest correlation with its histological counterpart, although con
ventional ODI systematically overestimated the true dispersion. In the 
context of our results, one possible explanation for the overestimation 
could be the fact that releasing d effectively leads to lower ODI values 
compared to the case where d is fixed to values larger than the under
lying substrate. However, corroboration of this hypothesis would 
require correlation with histological data.

The relaxation times, T2,in and T2,en, measured in this study displayed 
similar histogram distributions between MTE-NODDI with fixed d versus 
that with released d (Fig. 3), except in voxels where T2,en exhibited 
outliers. These findings align with the results published by Gong et al. 
(2020), who demonstrated only a slight negative bias in T2,en when d 
was overestimated, a minor decrease in precision when d was under
estimated, and no significant changes in T2,in for varying d. This was also 
reflected in the low correlation seen in the scatter plots of T2,in and T2,en 

versus d in our results. The mean WM values in the ROIs for all animals 
prior to stroke are in agreement with the current consensus that T2,in >

T2,en for WM tissue (Benjamini and Basser, 2017; Gong et al., 2020; 
McKinnon and Jensen, 2019; Veraart et al., 2017). More specifically, the 
T2,in values estimated in our work are slightly below the range [69,94] 
ms observed by Gong et al. (2020), and the range [64,94] ms reported by 
McKinnon and Jensen (2019). Conversely, T2,en falls within the range 
[42,61] ms reported by Gong et al. (2020), but below the range [56,64] 
ms published by McKinnon and Jensen (2019). However, a direct 
comparison of absolute WM values is hampered by the proven depen
dence of these parameters on the relative orientation of the WM tract 
within the static magnetic field (McKinnon and Jensen, 2019). 
Regarding GM, the pre-stroke compartmental relaxation times averaged 
across all animals also suggest that the inequality T2,in > T2,en holds true, 
although to a lesser extent. This trend is in agreement with the work by 
Benjamini and Basser (2017), who verified the condition T2,in > T2,en for 
the intra-cellular and the interstitial GM. More generally, the whole-slice 
histogram distributions of T2,in and T2,en for healthy tissue presented 
here (Figs. 3 and 9) agree well with those shown in the original 
MTE-NODDI work (Gong et al., 2020), as well as with the TEdDI model 
by Veraart et al. (2017), despite the fact that the latter neglects the free 
diffusion compartment.

In terms of the assessment of the optimal regularisation parameter, 
several approaches have been previously utilised in the context of DW 
MRI, including empirical methods (Daducci et al., 2015; Landman et al., 
2012) and ad hoc techniques such as the generalised cross-validation 
method (Golub et al., 1979). Here, we have chosen the more straight
forward L-curve method, which has been previously used in DW MRI 
(Descoteaux et al., 2006). This method has the advantage of not 
requiring data simulation or prior knowledge. Consequently, it implic
itly includes all nuisances associated with the experimental data. The 
synthetic data simulation demonstrated that the regularisation param
eter computed using the L-curve method on in vivo data provides a fairly 
good minimisation of the bias, standard deviation and MSE of the 
simulated MTE-NODDI parameters. In this regard, it should be 
emphasised that, given the bimodal distribution exhibited by some of 
the MTE-NODDI parameters (see Fig. 4 and Fig. S.2), analysing only the 
bias may be misleading, as it can obscure meaningful differences be
tween solution sets. In such scenarios, the MSE, which accounts for both 
bias and standard deviation, offers a more robust and interpretable 
metric for the overall performance of the estimator.

4.2. MTE-NODDI in ischaemic stroke

We have demonstrated that MTE-NODDI parameter maps offer 
unique, complementary contrast information that has the potential to 

probe the cascade of biophysical mechanisms occurring in ischemic 
tissue following stroke. In the following, we discuss the spatiotemporal 
evolution of such parameters in light of the current literature, while a 
biophysical interpretation is presented in the subsequent subsection.

A notable finding of this study is that the isotropic water fraction 
fiso,0, as well as the TE-dependent counterparts, are significantly 
increased in the ischaemic cortex. This appears to contradict previous 
observations in human brain ischaemic stroke using NODDI, where a 
reduction of the isotropic fraction was reported (Adluru et al., 2014; 
Wang et al., 2019). This discrepancy may be attributed to the inverse 
relationship between fiso,i and d, as reported previously (Guerrero et al., 
2019; Howard et al., 2022). Specifically, an overestimation of d leads to 
an underestimation of the isotropic fraction. Moreover, our results are 
consistent with previous works, where an increase in the free-diffusion 
water fraction, as evaluated using various free-water diffusion imaging 
techniques, was reported in both the acute and subacute phases of 
ischaemic stroke in rat (Farrher et al., 2021) and human (Nägele et al., 
2024) brain tissues. Crucially, the fact that the isotropic fraction at the 
ipsilateral cortex is significantly elevated suggests that other models, 
such as TEdDI (Veraart et al., 2017) (in DW-T2W experiments), NOD
DIDa (Jelescu et al., 2016) and others (Kaden et al., 2016) (in DW ex
periments), may be inappropriate for the investigation of ischemic tissue 
due to absence of this fraction in the model.

Another key technical outcome of the present work is that the 
collapse of fin,i to unity in the early phases of stroke (Fig. 3) for fixed, 
overestimated d (which further translates as an outlier in both fin,0 and 
T2,en) is mitigated by releasing d. Our group has previously reported this 
feature in a preliminary work (Farrher et al., 2023) where the collapse of 
fin,i (and fin,0) was avoided by using fixed values of d < 1.7 μm2/ms. 
Moreover, this feature in fin,i within the framework of NODDI in 
ischaemic tissue has also previously been observed in both animals 
(Wang et al., 2021) and humans (Wang et al., 2019), although explicit 
discussion of its implications was not provided by the authors. We have 
demonstrated that fin,0 appears elevated in the ischaemic tissue one day 
after stroke, even when d is released. More generally, the evolution of 
fin,0 during the different phases of stroke is tendentially (yet not in ab
solute values) comparable to that of the intra-neurite fraction estimated 
using conventional NODDI and other biophysical models (Bagdasarian 
et al., 2021; Hui et al., 2012b; Kellner et al., 2022). Kellner et al. (2022)
observed an increase of ~50 % (roughly estimated based on their charts) 
in human WM during the hyperacute phase (a median of 132 min after 
stroke), using the diffusion microstructure imaging approach (Reisert 
et al., 2017). At a mean of ~42 h after stroke, Hui et al. (2012b) reported 
a milder increase of ~10 % in human WM, which was evaluated with the 
help of the white matter tract integrity model (Fieremans et al., 2011), 
and in agreement with the trend towards renormalisation with time seen 
in our work. Furthermore, in a study using conventional NODDI in WM 
at the late subacute (14 days) and chronic (231 days) phases, Mas
tropietro et al. (2019) reported no significant changes (late subacute 
phase) and a significant reduction (chronic phase) of the intra-neurite 
fraction, also in agreement with our results. However, the former ap
pears to conflict with the results reported by Wang et al. (2019), where 
an average increase in the intra-neurite fraction of ~61 % was shown for 
subjects measured between 3 days and 2 weeks after stroke. These dis
crepancies emphasise the need for further studies in order to clearly 
elucidate the spatiotemporal evolution of this parameter.

Conventional ODI has been shown to have high sensitivity to tissue 
microstructural changes during ischaemic stroke (Adluru et al., 2014; 
Bagdasarian et al., 2021; Mastropietro et al., 2019; Wang et al., 2019; 
Wang et al., 2021). We demonstrated that the increase in ODI is milder 
for the case with free d compared to that with fixed, overestimated d 
(Fig. 3). More generally, the increment in ODI during the acute and 
subacute phases seen in this work is also consistent with the trends 
previously observed in human WM (Mastropietro et al., 2019; Wang 
et al., 2019) and rat GM (Bagdasarian et al., 2021; Wang et al., 2021). 
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However, Bagdasarian et al. (2021) reported only a small, not significant 
rise in ODI in the rat external capsule. Finally, during the chronic phase 
only a slight increase in ODI, smaller in magnitude than in previous 
phases, in the ischemic striatum (Bagdasarian et al., 2021) and WM 
(Bagdasarian et al., 2021; Mastropietro et al., 2019) was reported, which 
is also in agreement with our results.

The decline in d during the acute and subacute phases witnessed here 
is in agreement with that observed in the compartmental diffusivities 
provided by similar models. For instance, Kellner et al. (2022) reported a 
reduction in all diffusivities (axial intra-neurite as well as axial and 
radial extra-neurite) in human WM during the hyperacute phase. Simi
larly, Hui et al. (2012b) reported a reduction in the same three 
compartmental diffusivities in the human brain at a mean of ~42 h after 
stroke onset. Interestingly, the highest degree of change was observed in 
the intra-axonal diffusivity in both publications. However, it is impor
tant to emphasise that the models mentioned above are intrinsically 
different from NODDI, particularly in that the axial intra- and 
extra-neurite diffusivities in NODDI are constrained to be equal, and the 
radial extra-neurite diffusivity directly depends on d via the tortuosity 
model (Szafer et al., 1995; Zhang et al., 2012).

Qualitatively, the spatiotemporal evolution of T2,in and T2,en is 
comparable to that of conventional T2, which has been thoroughly 
investigated in the literature on MCAo models (Carano et al., 2000; 
Farrher et al., 2021; Lin et al., 2002; Lin et al., 2002; Sotak, 2002; 
Wagner et al., 2012). Coarsely, it can be divided into three phases. 
Firstly, an initial, rather homogeneous increase during the acute phase, 
which peaks between 24 and 48 h after stroke onset, has been described. 
Afterwards, during the subacute phase, the ischaemic cortex displays a 
heterogeneous evolution where the ischemic core experiences a tran
sient renormalisation, while the surrounding border zone tends to show 
steadily higher values. Finally, during the late subacute and chronic 
phases, the ischaemic core displays a further increase, which finally 
leads to a homogeneously increased T2 in the whole ischaemic cortex. 
Crucially, however, we have demonstrated that T2,in and T2,en not only 
exhibit significant differences during the various phases of stroke, but 
also display different patterns of spatial heterogeneity (Fig. 10). This 
underscores the potentially complementary insights these parameters 
provide into tissue condition.

4.3. A digression on the biophysical picture

The biophysical mechanisms occurring during the first 24 to 48 h 
after MCAo include cellular swelling (Knight et al., 1991) and neurite 
beading (Budde and Frank, 2010) as a result of cytotoxic oedema, which 
is consistent with the increase in fin,0 and the decrease in d reported here. 
A well-known feature that occurs as a consequence of these mechanisms, 
is a reduction in conventional MD (Carano et al., 2000; Grinberg et al., 
2014, 2012; Hui et al., 2012a, 2012b). In this regard, Hui et al. (2012b)
demonstrated that the dominant factor leading to the decrease in MD 
during the subacute phase is a reduction in the axial intra-axonal 
diffusivity (46 %), whereas a smaller increase (10 %) in the axonal 
water fraction was measured in human WM. This tendency aligns with 
our results in ischaemic GM, where although the magnitude of change in 
fin,0 one day after stroke (35 %) is similar to that of d (32 %), from day 
two onwards, fin,0 displays a trend towards renormalisation, whereas d 
remains at significantly lower-than-normal values. However, it should 
be noted that NODDI fundamentally blends the contribution of soma, 
microglia, astrocytes, interstitial space and other types of cells into a 
single compartment, namely the extra-neurite space. Therefore, the in
crease in fin,0 in acute stroke only refers to the increase in the 
intra-neurite space, whereas the characteristic soma swelling of cyto
toxic oedema is not captured by the current model. Likewise, the obvi
ation of the soma compartment, may represent a potentially 
confounding factor in the interpretation of other variables associated 
with the tissue compartment.

Another mechanism that occurs during the acute and early subacute 
phases of stroke is an increase in tissue water content (Carano et al., 
2000; Helpern et al., 1993; Knight et al., 1991; Lin et al., 2002; Pierpaoli 
et al., 1993; Wagner et al., 2012) and the development of tissue vacu
olation (Farrher et al., 2021; Helpern et al., 1993; Nägele et al., 2024). 
These changes are thought to be responsible for the increase in the 
conventional T2 (Knight et al., 1991; Lin et al., 2002; Matsumoto et al., 
1995; Wagner et al., 2012) and the free-diffusion fraction (Farrher et al., 
2021; Nägele et al., 2024), which is also consistent with the increment in 
T2,in, T2,en and fiso,0 reported here. Remarkably, the inequality T2,in >

T2,en holds true for the whole investigated time window. Although not 
yet well understood, this inequality has been explained for WM in terms 
of different exchange rates between the myelin and the 
intra/extra-axonal water pools due to differences in the 
surface-to-volume ratio of the two compartments and the effect of the 
axonal membrane that, collectively, retard the exchange between the 
myelin and the intra-axonal water pools (Gong et al., 2020; Lin et al., 
2018; Nilsson et al., 2010; Veraart et al., 2017). In the case of GM, the 
smaller difference between both relaxation times is likely a consequence 
of the relatively lower fraction of myelinated axons. Hence, the differing 
spatiotemporal progression of T2,in and T2,en likely holds the potential to 
discern the relevance that the former mechanisms have throughout the 
development of ischaemia. Nevertheless, more dedicated experimental 
data and histopathological analyses are needed in order to further 
elucidate these hypotheses.

During the subacute phase, the conventional MD and T2 are known 
to have a heterogeneous evolution, where the core (or necrotic) zone 
displays a trend towards renormalisation and the border (or clearance) 
zone shows steadily elevated values (Farrher et al., 2021; Hui et al., 
2012a; Lin et al., 2002; Lin et al., 2002; Wagner et al., 2012). The pro
posed mechanisms to explain the former include drainage and an in
crease in the binding of free water by degraded proteins, whereas the 
latter has been interpreted in terms of tissue liquefaction and peri
vascular oedema (Farrher et al., 2021; Lin et al., 2002; Lin et al., 2002; 
Wagner et al., 2012). Conversely, the conventional FA displays a rather 
homogeneous temporal progression (Farrher et al., 2021). Interestingly, 
some MTE-NODDI parameters, namely fiso,0, d, T2,in and T2,en seem to 
parallel the heterogeneous spatiotemporal patterns of conventional MD 
and T2, whereas fin,0 and ODI display rather homogeneous patterns, 
similar to the case of conventional FA.

Evidence in the literature suggests that a change in ODI may have 
different substrates, depending on the tissue under consideration. For 
example, in an in vitro study on multiple sclerosis, Grussu et al. (2017)
linked a reduction in ODI with focal demyelination and the consequent 
reduced geometrical complexity in the axon architecture of the human 
spinal cord. Conversely, a reduction in ODI at the cortex may indicate a 
reduction in the complexity of dendritic arborisations (Grussu et al., 
2017). Interestingly, the temporal evolution of ODI appears negatively 
correlated with that of the conventional FA (Farrher et al., 2021; Hui 
et al., 2012a; Mastropietro et al., 2019). This result, together with the 
minor change seen in fin,0 during the same time window, suggests that 
the dominant mechanism inducing the typically observed reduction in 
FA may likely be an increase in the neurite orientation dispersion, 
whereas a reduction in the neurite density may be less important.

4.4. Clinical relevance

An important aspect that hinders the application of MTE-NODDI in 
clinical practice is its long acquisition time. In this regard, our estima
tion approach based on the simultaneous analysis of all T2W experi
ments enables more flexible experimental setups compared to the 
original MTE-NODDI, where the same DW experiment must be per
formed for each TE. Additionally, optimisation approaches, such as the 
minimisation of the Cramér-Rao lower bound of the parameters, in 
combination with appropriate parametrisation of the experimental 
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settings, could be utilised to further reduce the acquisition time (Collier 
et al., 2017; Gras et al., 2017; Poot et al., 2010).

Although a large proportion of research into diffusion and relax
ometry MRI in stroke focuses on the hyperacute phase and the early 
detection after onset, some works have demonstrated that conventional 
ODI offers unique information on motor outcomes after stroke (DiBella 
et al., 2022; Hodgson et al., 2019; Mastropietro et al., 2019). In this 
regard, it is expected that MTE-NODDI parameters may not only 
improve the comparability and reproducibility between studies and/or 
institutions via the use of the TE-independent compartmental fractions 
but may also provide unique physiological insight into tissue condition 
and outcome.

An important topic within the stroke community relates to the seg
mentation of affected tissue. In this regard, Kellner et al. (2022)
demonstrated that the axial intra-neurite diffusivity provides a superior 
contrast between ischaemic and healthy tissue compared to that of 
conventional DW MRI models. This, in turn, leads to higher accuracy 
and precision in the delineation of the infarcted tissue. Similarly, we 
hypothesise that the newly estimated d could also provide comple
mentary information for tissue segmentation approaches. More gener
ally, it is expected that multiparametric-based machine learning 
segmentation approaches (Benzakoun et al., 2021; Lee et al., 2020) may 
also benefit from the heterogeneous spatiotemporal progression of 
MTE-NODDI parameters after stroke.

5. Limitations

While the MTE-NODDI parameters exhibited trends consistent with 
the expected sensitivity to the hypothesised biophysical property, it is 
important to interpret these parameters strictly within the framework of 
NODDI (or MTE-NODDI). Indeed, besides the limitation regarding the 
fixation of d, the soundness of the axial, intra- and extra-neurite diffu
sivity being equal has been addressed in several papers, where the idea 
of the former being larger than the latter seems to prevail (Kunz et al., 
2018; Reisert et al., 2017; Szczepankiewicz et al., 2015; Veraart et al., 
2017). Similarly, the validity of the tortuosity model has been ques
tioned, particularly in cases of tightly packed axons (Jelescu and Budde, 
2017; Novikov and Fieremans, 2012). Moreover, the assumption of a 
negligible exchange between compartments, which may be significant 
during the acute phase of ischaemic stroke, has also been challenged by 
several authors (Jelescu et al., 2022; Lampinen et al., 2021; Lätt et al., 
2009; Zhang et al., 2021). For a more detailed discussion on the former 
topics, the reader is referred to the following reviews (Jelescu and 
Budde, 2017; Kamiya et al., 2020; Lampinen et al., 2023).

In the particular case of GM, although NODDI was originally intro
duced as a tool to assess tissue microstructural complexity in both GM 
and WM (Zhang et al., 2012), the validity of the model assumptions in 
GM has been challenged in several works. In particular, NODDI does not 
explicitly account for the soma compartment in GM. Hence, more so
phisticated models able to capture soma characteristics, such as SANDI 
(Palombo et al., 2020), would be advantageous in studies of ischaemic 
stroke. Nevertheless, the neglect of the soma compartment has been 
shown to become significant for b-values > 3 ms/μm2 (Palombo et al., 
2020), which is beyond the b-value range utilised in our work.

Another limitation of the current study is the sample size, which 
reduces statistical power and poses a limitation to the generalisability of 
our results. Moreover, the lack of direct histological validation repre
sents a limitation to the interpretation of the results. This emphasises the 
need for further studies, where direct histological data are acquired in 
parallel to MRI data.

One aspect that hinders the direct application of the present esti
mation approach is the lengthy data postprocessing time, which on an 
Intel Core i9, 8th Gen processor with six parallel workers needs 
approximately 1.5 h per slice. In this regard, convex optimisation ap
proaches such as AMICO (Daducci et al., 2015) could potentially help 
reduce the postprocessing time. In this context, more advanced 

estimation approaches, such as the deep learning-based Bayesian 
method proposed by Jallais and Palombo (2024), could be beneficial for 
these kinds of models, displaying highly degenerate landscapes.

Finally, a detailed analysis of the ischaemic WM was hampered by 
the reduced image resolution, which hindered an accurate segmentation 
of the external capsule. However, as known from the literature, the 
signature of ischaemic stroke in the DW signal (especially at high b- 
values) in WM is different from that of GM (Hui et al., 2012b; Jensen 
et al., 2011), emphasising the need for further studies employing higher 
spatial resolution.

6. Conclusions

This study has demonstrated that the assessment of ischaemic tissue 
after MCAo using MTE-NODDI with released intrinsic diffusivity is 
feasible by incorporating an l2-norm regularisation term in the least- 
squares cost function. The findings also indicate that some of the 
shortcomings of conventional MTE-NODDI in ischaemic tissue (e.g. the 
underestimation of the free-diffusion fraction and the overestimation of 
the intra-neurite fraction) can be mitigated by releasing the intrinsic 
diffusivity. Moreover, the evolution of the newly estimated MTE-NODDI 
parameters was shown to be heterogeneous and heterochronous, with 
parameters such as the intra-neurite fraction and the orientation 
dispersion index showing rather homogenous values within the ischae
mic cortex throughout the time course of the study. On the other hand, 
parameters such as the free-diffusion fraction and the intra-/extra-neu
rite T2 times displayed heterogeneous spatial distributions, highlighting 
differences between the ischaemic core and border zone. Hence, this 
new set of relaxation- and diffusion-related parameters have the po
tential to both deepen our understanding of the biophysical mechanisms 
triggered after stroke onset, as well as the monitoring of tissue evolution 
and prediction of stroke outcome.
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