001044789 001__ 1044789
001044789 005__ 20251211202153.0
001044789 0247_ $$2doi$$a10.14279/ECEASST.V83.2626
001044789 0247_ $$2doi$$a10.14279/eceasst.v83.2626
001044789 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03345
001044789 037__ $$aFZJ-2025-03345
001044789 041__ $$aEnglish
001044789 1001_ $$0P:(DE-HGF)0$$aFabian, Hoppe$$b0$$eCorresponding author
001044789 1112_ $$aFourth Conference on Research Software Engineering in Germany, deRSE24$$cWürzburg$$d2024-03-05 - 2024-03-07$$wGermany
001044789 245__ $$aEngineering a large-scale data analytics and array computing library for research: Heat
001044789 260__ $$bElectronic Communications of the EASST$$c2025
001044789 29510 $$aElectronic Communications of the EASST
001044789 300__ $$a1-26
001044789 3367_ $$2ORCID$$aCONFERENCE_PAPER
001044789 3367_ $$033$$2EndNote$$aConference Paper
001044789 3367_ $$2BibTeX$$aINPROCEEDINGS
001044789 3367_ $$2DRIVER$$aconferenceObject
001044789 3367_ $$2DataCite$$aOutput Types/Conference Paper
001044789 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1765464821_29041
001044789 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
001044789 520__ $$aHeat is a Python library for massively-parallel and GPU-accelerated arraycomputing and machine learning. It is developed by researchers for researchers,with the ultimate goal to make multi-dimensional array processing and machinelearning for scientists (almost) as easy on a supercomputer as it is on a workstationwith NumPy or scikit-learn. This paper highlights the relevance of this project to theresearch software engineering community by giving a short, but illustrative overviewof Heat and discusses its role in the context of related libraries with a specific focuson its research software aspects.
001044789 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001044789 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
001044789 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x2
001044789 588__ $$aDataset connected to DataCite
001044789 650_7 $$2Other$$aMulti-dimensional Arrays
001044789 650_7 $$2Other$$aMachine learning
001044789 650_7 $$2Other$$aData Science
001044789 650_7 $$2Other$$aData analytics
001044789 650_7 $$2Other$$aHigh-Performance Computing
001044789 650_7 $$2Other$$aParallel Computing
001044789 650_7 $$2Other$$aGPUs
001044789 650_7 $$2Other$$aBig Data
001044789 650_7 $$2Other$$aResearch Software
001044789 7001_ $$0P:(DE-HGF)0$$aGutiérrez Hermosillo Muriedas, J. P.$$b1
001044789 7001_ $$0P:(DE-Juel1)178977$$aTarnawa, Michael$$b2
001044789 7001_ $$0P:(DE-HGF)0$$aPhilipp, Knechtges$$b3
001044789 7001_ $$0P:(DE-Juel1)132123$$aHagemeier, Björn$$b4
001044789 7001_ $$0P:(DE-Juel1)129347$$aKrajsek, Kai$$b5
001044789 7001_ $$0P:(DE-HGF)0$$aAlexander, Rüttgers$$b6
001044789 7001_ $$0P:(DE-HGF)0$$aMarkus, Götz$$b7
001044789 7001_ $$0P:(DE-Juel1)174573$$aComito, Claudia$$b8
001044789 773__ $$a10.14279/eceasst.v83.2626
001044789 8564_ $$uhttps://juser.fz-juelich.de/record/1044789/files/manuscript.pdf$$yOpenAccess
001044789 909CO $$ooai:juser.fz-juelich.de:1044789$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001044789 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178977$$aForschungszentrum Jülich$$b2$$kFZJ
001044789 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132123$$aForschungszentrum Jülich$$b4$$kFZJ
001044789 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129347$$aForschungszentrum Jülich$$b5$$kFZJ
001044789 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174573$$aForschungszentrum Jülich$$b8$$kFZJ
001044789 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001044789 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
001044789 9141_ $$y2025
001044789 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001044789 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001044789 920__ $$lyes
001044789 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001044789 980__ $$acontrib
001044789 980__ $$aVDB
001044789 980__ $$acontb
001044789 980__ $$aI:(DE-Juel1)JSC-20090406
001044789 980__ $$aUNRESTRICTED
001044789 9801_ $$aFullTexts