001044797 001__ 1044797
001044797 005__ 20251007202032.0
001044797 0247_ $$2doi$$a10.3389/fncom.2025.1525785
001044797 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03353
001044797 037__ $$aFZJ-2025-03353
001044797 082__ $$a610
001044797 1001_ $$0P:(DE-Juel1)190833$$aHoheisel, Linnea$$b0$$eCorresponding author
001044797 245__ $$aComputational modelling reveals neurobiological contributions to static and dynamic functional connectivity patterns
001044797 260__ $$aLausanne$$bFrontiers Research Foundation$$c2025
001044797 3367_ $$2DRIVER$$aarticle
001044797 3367_ $$2DataCite$$aOutput Types/Journal article
001044797 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1759822532_25235
001044797 3367_ $$2BibTeX$$aARTICLE
001044797 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001044797 3367_ $$00$$2EndNote$$aJournal Article
001044797 520__ $$aFunctional connectivity (FC) is a widely used indicator of brain function in health and disease, yet its neurobiological underpinnings still need to be firmly established. Recent advances in computational modelling allow us to investigate the relationship of both static FC (sFC) and dynamic FC (dFC) with neurobiology non-invasively.In this study, we modelled the brain activity of 200 healthy individuals based on empirical resting-state functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data. Simulations were conducted using a group-averaged structural connectome and four parameters guiding global integration and local excitation-inhibition balance: (i) G, a global coupling scaling parameter; (ii) Ji, an inhibitory coupling parameter; (iii) JN, the excitatory NMDA synaptic coupling parameter; and (iv) wp, the excitatory population recurrence weight. For each individual, we optimised the parameters to replicate empirical sFC and temporal correlation (TC). We analysed associations between brain-wide sFC and TC features with optimal model parameters and fits with a univariate correlation approach and multivariate prediction models. In addition, we used a group-average perturbation approach to investigate the effect of coupling in each region on overall network connectivity.Our models could replicate empirical sFC and TC but not the FC variance or node cohesion (NC). Both fits and parameters exhibited strong associations with brain connectivity. G correlated positively and JN negatively with a range of static and dynamic FC features (|r| > 0.2, pFDR < 0.05). TC fit correlated negatively, and sFC fit positively with static and dynamic FC features. TC features were predictive of TC fit, sFC features of sFC fit (R2 > 0.5). Perturbation analysis revealed that the sFC fit was most impacted by coupling changes in the left paracentral gyrus (Δr = 0.07), TC fit by alterations in the left pars triangularis (Δr = 0.24).Our findings indicate that neurobiological characteristics are associated with individual variability in sFC and dFC, and that sFC and dFC are shaped by small sets of distinct regions. By modelling both sFC and dFC, we provide new evidence of the role of neurophysiological characteristics in establishing brain network configurations.
001044797 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001044797 536__ $$0G:(GEPRIS)491111487$$aDFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2025 - 2027 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x1
001044797 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001044797 7001_ $$0P:(DE-HGF)0$$aHacker, Hannah$$b1
001044797 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R$$b2
001044797 7001_ $$0P:(DE-Juel1)162297$$aDaun, Silvia$$b3$$ufzj
001044797 7001_ $$0P:(DE-Juel1)188257$$aKambeitz, Joseph$$b4
001044797 773__ $$0PERI:(DE-600)2452964-3$$a10.3389/fncom.2025.1525785$$gVol. 19, p. 1525785$$p1525785$$tFrontiers in computational neuroscience$$v19$$x1662-5188$$y2025
001044797 8564_ $$uhttps://juser.fz-juelich.de/record/1044797/files/PDF.pdf$$yOpenAccess
001044797 8767_ $$d2025-08-04$$eAPC$$jDeposit$$z2673,68 CHF
001044797 909CO $$ooai:juser.fz-juelich.de:1044797$$popenaire$$popen_access$$pOpenAPC$$pdriver$$pVDB$$popenCost$$pdnbdelivery
001044797 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190833$$aForschungszentrum Jülich$$b0$$kFZJ
001044797 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b2$$kFZJ
001044797 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162297$$aForschungszentrum Jülich$$b3$$kFZJ
001044797 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001044797 9141_ $$y2025
001044797 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001044797 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001044797 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001044797 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
001044797 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-07
001044797 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-07
001044797 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001044797 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT COMPUT NEUROSC : 2022$$d2025-01-07
001044797 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-12-08T13:18:52Z
001044797 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-12-08T13:18:52Z
001044797 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
001044797 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-07
001044797 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001044797 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-07
001044797 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001044797 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-12-08T13:18:52Z
001044797 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-07
001044797 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001044797 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001044797 920__ $$lyes
001044797 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
001044797 980__ $$ajournal
001044797 980__ $$aVDB
001044797 980__ $$aUNRESTRICTED
001044797 980__ $$aI:(DE-Juel1)INM-3-20090406
001044797 980__ $$aAPC
001044797 9801_ $$aAPC
001044797 9801_ $$aFullTexts