001     1044797
005     20251007202032.0
024 7 _ |a 10.3389/fncom.2025.1525785
|2 doi
024 7 _ |a 10.34734/FZJ-2025-03353
|2 datacite_doi
037 _ _ |a FZJ-2025-03353
082 _ _ |a 610
100 1 _ |a Hoheisel, Linnea
|0 P:(DE-Juel1)190833
|b 0
|e Corresponding author
245 _ _ |a Computational modelling reveals neurobiological contributions to static and dynamic functional connectivity patterns
260 _ _ |a Lausanne
|c 2025
|b Frontiers Research Foundation
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1759822532_25235
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Functional connectivity (FC) is a widely used indicator of brain function in health and disease, yet its neurobiological underpinnings still need to be firmly established. Recent advances in computational modelling allow us to investigate the relationship of both static FC (sFC) and dynamic FC (dFC) with neurobiology non-invasively.In this study, we modelled the brain activity of 200 healthy individuals based on empirical resting-state functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data. Simulations were conducted using a group-averaged structural connectome and four parameters guiding global integration and local excitation-inhibition balance: (i) G, a global coupling scaling parameter; (ii) Ji, an inhibitory coupling parameter; (iii) JN, the excitatory NMDA synaptic coupling parameter; and (iv) wp, the excitatory population recurrence weight. For each individual, we optimised the parameters to replicate empirical sFC and temporal correlation (TC). We analysed associations between brain-wide sFC and TC features with optimal model parameters and fits with a univariate correlation approach and multivariate prediction models. In addition, we used a group-average perturbation approach to investigate the effect of coupling in each region on overall network connectivity.Our models could replicate empirical sFC and TC but not the FC variance or node cohesion (NC). Both fits and parameters exhibited strong associations with brain connectivity. G correlated positively and JN negatively with a range of static and dynamic FC features (|r| > 0.2, pFDR < 0.05). TC fit correlated negatively, and sFC fit positively with static and dynamic FC features. TC features were predictive of TC fit, sFC features of sFC fit (R2 > 0.5). Perturbation analysis revealed that the sFC fit was most impacted by coupling changes in the left paracentral gyrus (Δr = 0.07), TC fit by alterations in the left pars triangularis (Δr = 0.24).Our findings indicate that neurobiological characteristics are associated with individual variability in sFC and dFC, and that sFC and dFC are shaped by small sets of distinct regions. By modelling both sFC and dFC, we provide new evidence of the role of neurophysiological characteristics in establishing brain network configurations.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2025 - 2027 / Forschungszentrum Jülich (OAPKFZJ) (491111487)
|0 G:(GEPRIS)491111487
|c 491111487
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hacker, Hannah
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Fink, Gereon R
|0 P:(DE-Juel1)131720
|b 2
700 1 _ |a Daun, Silvia
|0 P:(DE-Juel1)162297
|b 3
|u fzj
700 1 _ |a Kambeitz, Joseph
|0 P:(DE-Juel1)188257
|b 4
773 _ _ |a 10.3389/fncom.2025.1525785
|g Vol. 19, p. 1525785
|0 PERI:(DE-600)2452964-3
|p 1525785
|t Frontiers in computational neuroscience
|v 19
|y 2025
|x 1662-5188
856 4 _ |u https://juser.fz-juelich.de/record/1044797/files/PDF.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1044797
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190833
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)162297
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-07
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT COMPUT NEUROSC : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-12-08T13:18:52Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-12-08T13:18:52Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-07
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-12-08T13:18:52Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21