001044801 001__ 1044801
001044801 005__ 20251027132708.0
001044801 0247_ $$2doi$$a10.1016/j.solmat.2025.113589
001044801 0247_ $$2ISSN$$a0927-0248
001044801 0247_ $$2ISSN$$a1879-3398
001044801 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03356
001044801 0247_ $$2WOS$$aWOS:001449322100001
001044801 037__ $$aFZJ-2025-03356
001044801 082__ $$a620
001044801 1001_ $$0P:(DE-Juel1)179536$$aPeters, Ian Marius$$b0$$eCorresponding author
001044801 245__ $$aThe photovoltaic Dyson sphere
001044801 260__ $$aAmsterdam [u.a.]$$bNH, Elsevier$$c2025
001044801 3367_ $$2DRIVER$$aarticle
001044801 3367_ $$2DataCite$$aOutput Types/Journal article
001044801 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1761216575_6235
001044801 3367_ $$2BibTeX$$aARTICLE
001044801 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001044801 3367_ $$00$$2EndNote$$aJournal Article
001044801 520__ $$aThis study explores the concept of a photovoltaic Dyson sphere, a megastructure designed to capture and convert a star's energy for use in advanced technological applications. The temperature of a Dyson sphere composed of both blackbody and grey body materials is investigated. For efficient photovoltaic conversion, the semiconductor sphere must be coated with a black material to regulate temperature, ensuring it remains low enough for photovoltaic generation. The environmental impact on planetary conditions is also analyzed, revealing that only a Dyson sphere with an extension beyond Earth's orbit could allow life to persist on Earth while maintaining suitable temperatures for photovoltaic efficiency. Such a structure would still increase Earth’s temperature, necessitating planetary temperature control systems—an issue that parallels the challenges of mitigating global warming. Considering material availability in the solar system, it was found that a partial Dyson sphere at 2.13 AU, using 1.3 × 1023 kg of silicon, could generate 4 % of the Sun’s power, yielding 15.6 YW of electricity while increasing temperature on Earth by less than 3K.
001044801 536__ $$0G:(DE-HGF)POF4-1214$$a1214 - Modules, stability, performance and specific applications (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001044801 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001044801 773__ $$0PERI:(DE-600)2012677-3$$a10.1016/j.solmat.2025.113589$$gVol. 286, p. 113589 -$$p113589 -$$tSolar energy materials & solar cells$$v286$$x0927-0248$$y2025
001044801 8564_ $$uhttps://juser.fz-juelich.de/record/1044801/files/1-s2.0-S0927024825001904-main.pdf$$yOpenAccess
001044801 8767_ $$d2025-08-04$$eHybrid-OA$$jDEAL
001044801 909CO $$ooai:juser.fz-juelich.de:1044801$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001044801 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179536$$aForschungszentrum Jülich$$b0$$kFZJ
001044801 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1214$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001044801 9141_ $$y2025
001044801 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001044801 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001044801 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001044801 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001044801 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-18
001044801 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001044801 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
001044801 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
001044801 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSOL ENERG MAT SOL C : 2022$$d2024-12-18
001044801 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
001044801 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001044801 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
001044801 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOL ENERG MAT SOL C : 2022$$d2024-12-18
001044801 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
001044801 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001044801 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001044801 920__ $$lyes
001044801 9201_ $$0I:(DE-Juel1)IET-2-20140314$$kIET-2$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
001044801 980__ $$ajournal
001044801 980__ $$aVDB
001044801 980__ $$aUNRESTRICTED
001044801 980__ $$aI:(DE-Juel1)IET-2-20140314
001044801 980__ $$aAPC
001044801 9801_ $$aAPC
001044801 9801_ $$aFullTexts