001044815 001__ 1044815 001044815 005__ 20250912110137.0 001044815 0247_ $$2doi$$a10.1016/j.wear.2025.206200 001044815 0247_ $$2ISSN$$a0043-1648 001044815 0247_ $$2ISSN$$a1873-2577 001044815 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03370 001044815 0247_ $$2WOS$$aWOS:001527085200001 001044815 037__ $$aFZJ-2025-03370 001044815 082__ $$a670 001044815 1001_ $$0P:(DE-Juel1)201319$$aXu, Ruibin$$b0$$ufzj 001044815 245__ $$aRubber wear on concrete: Dry and in-water conditions 001044815 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2025 001044815 3367_ $$2DRIVER$$aarticle 001044815 3367_ $$2DataCite$$aOutput Types/Journal article 001044815 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1755146098_6922 001044815 3367_ $$2BibTeX$$aARTICLE 001044815 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001044815 3367_ $$00$$2EndNote$$aJournal Article 001044815 520__ $$aRubber wear results from the removal of small (micrometer-sized) rubber particles through crack propagation. In this study, we investigate the wear behavior of Styrene-ButadieneRubber (SBR) and Natural Rubber (NR) sliding on two different concrete surfaces under dry and wet (in water) conditions. Experiments are conducted at low sliding speeds (≈ 3 mm~s) to minimizefrictional heating and hydrodynamic effects. For two SBR compounds, we observe significantly higher wear rates in water compared to the dry state, with enhancement factors of 1.5−2.5 for a low-glass-transition-temperature SBR compound (Tg = −50○C) and approximately 4 for a higher-glass- transition compound (Tg = −7○C). In contrast, the NR compound showed no wear in water at lownominal contact pressures (σ0 ≈ 0.12, 0.16, and 0.25 MPa), while at higher pressures (σ0 ≈ 0.36 and 0.49 MPa), the wear rates in dry and in-water states are similar. The findings provide insights intothe mechanisms of rubber wear under varying environmental and mechanical conditions, highlighting the influence of material properties, interfacial effects, and applied pressures on wear behavior. 001044815 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0 001044815 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001044815 7001_ $$0P:(DE-HGF)0$$aMiyashita, N.$$b1 001044815 7001_ $$0P:(DE-Juel1)130885$$aPersson, Bo$$b2$$eCorresponding author$$ufzj 001044815 773__ $$0PERI:(DE-600)1501123-9$$a10.1016/j.wear.2025.206200$$gVol. 578-579, p. 206200 -$$p206200 -$$tWear$$v578-579$$x0043-1648$$y2025 001044815 8564_ $$uhttps://juser.fz-juelich.de/record/1044815/files/1-s2.0-S0043164825004697-main.pdf$$yOpenAccess 001044815 8564_ $$uhttps://juser.fz-juelich.de/record/1044815/files/2501.12561v2.pdf$$yOpenAccess 001044815 8767_ $$d2025-08-04$$eHybrid-OA$$jDEAL 001044815 909CO $$ooai:juser.fz-juelich.de:1044815$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire 001044815 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201319$$aForschungszentrum Jülich$$b0$$kFZJ 001044815 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)201319$$a State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, China$$b0 001044815 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)201319$$a MultiscaleConsulting, Wolfshovener str. 2, 52428 J¨ulich, Germany$$b0 001044815 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a The Yokohama Rubber Company, 2-1 Oiwake, Hiratsuka, Kanagawa 254-8601, Japan$$b1 001044815 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130885$$aForschungszentrum Jülich$$b2$$kFZJ 001044815 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)130885$$a State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, China$$b2 001044815 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)130885$$a MultiscaleConsulting, Wolfshovener str. 2, 52428 J¨ulich, Germany$$b2 001044815 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0 001044815 9141_ $$y2025 001044815 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 001044815 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023 001044815 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28 001044815 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-28 001044815 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-28 001044815 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 001044815 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-28 001044815 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bWEAR : 2022$$d2024-12-28 001044815 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-28 001044815 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28 001044815 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001044815 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-28 001044815 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bWEAR : 2022$$d2024-12-28 001044815 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-28 001044815 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28 001044815 920__ $$lyes 001044815 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0 001044815 980__ $$ajournal 001044815 980__ $$aVDB 001044815 980__ $$aUNRESTRICTED 001044815 980__ $$aI:(DE-Juel1)PGI-1-20110106 001044815 980__ $$aAPC 001044815 9801_ $$aAPC 001044815 9801_ $$aFullTexts