001     1044815
005     20250912110137.0
024 7 _ |a 10.1016/j.wear.2025.206200
|2 doi
024 7 _ |a 0043-1648
|2 ISSN
024 7 _ |a 1873-2577
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-03370
|2 datacite_doi
024 7 _ |a WOS:001527085200001
|2 WOS
037 _ _ |a FZJ-2025-03370
082 _ _ |a 670
100 1 _ |a Xu, Ruibin
|0 P:(DE-Juel1)201319
|b 0
|u fzj
245 _ _ |a Rubber wear on concrete: Dry and in-water conditions
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1755146098_6922
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Rubber wear results from the removal of small (micrometer-sized) rubber particles through crack propagation. In this study, we investigate the wear behavior of Styrene-ButadieneRubber (SBR) and Natural Rubber (NR) sliding on two different concrete surfaces under dry and wet (in water) conditions. Experiments are conducted at low sliding speeds (≈ 3 mm~s) to minimizefrictional heating and hydrodynamic effects. For two SBR compounds, we observe significantly higher wear rates in water compared to the dry state, with enhancement factors of 1.5−2.5 for a low-glass-transition-temperature SBR compound (Tg = −50○C) and approximately 4 for a higher-glass- transition compound (Tg = −7○C). In contrast, the NR compound showed no wear in water at lownominal contact pressures (σ0 ≈ 0.12, 0.16, and 0.25 MPa), while at higher pressures (σ0 ≈ 0.36 and 0.49 MPa), the wear rates in dry and in-water states are similar. The findings provide insights intothe mechanisms of rubber wear under varying environmental and mechanical conditions, highlighting the influence of material properties, interfacial effects, and applied pressures on wear behavior.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Miyashita, N.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Persson, Bo
|0 P:(DE-Juel1)130885
|b 2
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.wear.2025.206200
|g Vol. 578-579, p. 206200 -
|0 PERI:(DE-600)1501123-9
|p 206200 -
|t Wear
|v 578-579
|y 2025
|x 0043-1648
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1044815/files/1-s2.0-S0043164825004697-main.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1044815/files/2501.12561v2.pdf
909 C O |o oai:juser.fz-juelich.de:1044815
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)201319
910 1 _ |a State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, China
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)201319
910 1 _ |a MultiscaleConsulting, Wolfshovener str. 2, 52428 J¨ulich, Germany
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)201319
910 1 _ |a The Yokohama Rubber Company, 2-1 Oiwake, Hiratsuka, Kanagawa 254-8601, Japan
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130885
910 1 _ |a State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, China
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)130885
910 1 _ |a MultiscaleConsulting, Wolfshovener str. 2, 52428 J¨ulich, Germany
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)130885
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DEAL: Elsevier 09/01/2023
|0 PC:(DE-HGF)0125
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WEAR : 2022
|d 2024-12-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b WEAR : 2022
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21