001 | 1044815 | ||
005 | 20250912110137.0 | ||
024 | 7 | _ | |a 10.1016/j.wear.2025.206200 |2 doi |
024 | 7 | _ | |a 0043-1648 |2 ISSN |
024 | 7 | _ | |a 1873-2577 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2025-03370 |2 datacite_doi |
024 | 7 | _ | |a WOS:001527085200001 |2 WOS |
037 | _ | _ | |a FZJ-2025-03370 |
082 | _ | _ | |a 670 |
100 | 1 | _ | |a Xu, Ruibin |0 P:(DE-Juel1)201319 |b 0 |u fzj |
245 | _ | _ | |a Rubber wear on concrete: Dry and in-water conditions |
260 | _ | _ | |a Amsterdam [u.a.] |c 2025 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1755146098_6922 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Rubber wear results from the removal of small (micrometer-sized) rubber particles through crack propagation. In this study, we investigate the wear behavior of Styrene-ButadieneRubber (SBR) and Natural Rubber (NR) sliding on two different concrete surfaces under dry and wet (in water) conditions. Experiments are conducted at low sliding speeds (≈ 3 mm~s) to minimizefrictional heating and hydrodynamic effects. For two SBR compounds, we observe significantly higher wear rates in water compared to the dry state, with enhancement factors of 1.5−2.5 for a low-glass-transition-temperature SBR compound (Tg = −50○C) and approximately 4 for a higher-glass- transition compound (Tg = −7○C). In contrast, the NR compound showed no wear in water at lownominal contact pressures (σ0 ≈ 0.12, 0.16, and 0.25 MPa), while at higher pressures (σ0 ≈ 0.36 and 0.49 MPa), the wear rates in dry and in-water states are similar. The findings provide insights intothe mechanisms of rubber wear under varying environmental and mechanical conditions, highlighting the influence of material properties, interfacial effects, and applied pressures on wear behavior. |
536 | _ | _ | |a 5211 - Topological Matter (POF4-521) |0 G:(DE-HGF)POF4-5211 |c POF4-521 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Miyashita, N. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Persson, Bo |0 P:(DE-Juel1)130885 |b 2 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1016/j.wear.2025.206200 |g Vol. 578-579, p. 206200 - |0 PERI:(DE-600)1501123-9 |p 206200 - |t Wear |v 578-579 |y 2025 |x 0043-1648 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1044815/files/1-s2.0-S0043164825004697-main.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1044815/files/2501.12561v2.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:1044815 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)201319 |
910 | 1 | _ | |a State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, China |0 I:(DE-HGF)0 |b 0 |6 P:(DE-Juel1)201319 |
910 | 1 | _ | |a MultiscaleConsulting, Wolfshovener str. 2, 52428 J¨ulich, Germany |0 I:(DE-HGF)0 |b 0 |6 P:(DE-Juel1)201319 |
910 | 1 | _ | |a The Yokohama Rubber Company, 2-1 Oiwake, Hiratsuka, Kanagawa 254-8601, Japan |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)130885 |
910 | 1 | _ | |a State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, China |0 I:(DE-HGF)0 |b 2 |6 P:(DE-Juel1)130885 |
910 | 1 | _ | |a MultiscaleConsulting, Wolfshovener str. 2, 52428 J¨ulich, Germany |0 I:(DE-HGF)0 |b 2 |6 P:(DE-Juel1)130885 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5211 |x 0 |
914 | 1 | _ | |y 2025 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a DEAL: Elsevier 09/01/2023 |0 PC:(DE-HGF)0125 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-28 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-28 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b WEAR : 2022 |d 2024-12-28 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-28 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-28 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b WEAR : 2022 |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-28 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|