001     1044830
005     20250804202238.0
037 _ _ |a FZJ-2025-03385
100 1 _ |a Huang, Haoyu
|0 P:(DE-Juel1)199719
|b 0
|e Corresponding author
111 2 _ |a Nordic Energy Informatics Academy Conference (Nordic EIA 2025)
|c Stockholm
|d 2025-08-20 - 2025-08-22
|w Sweden
245 _ _ |a Towards ICT-Enabled Multi-Agent based Operations in Local Energy Communities: A Proof of Concept
260 _ _ |c 2025
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1754309879_14478
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a Abstract. The growing decentralization of energy systems requires scalable,flexible coordination of distributed generation, energy storage, anddemand-side flexibility among local energy communities. This work buildsupon the agent-based scheduling framework MASSIVE, extending its capabilitiesto operate in real-world settings. Within the extensive framework,agents participate in the local electricity market by submitting bidsbased on operational constraints and preferences of local energy componentsor aggregates, such as a campus. Optimized setpoints derived frommarket clearing are sent as control signals to physical or simulated assets.To enable the transmission to be modular, interoperable, and responsivein real time, we extend the MASSIVE framework with a lightweight,MQTT-based layer. We validate the applicability of these control signalsthrough a series of experiments involving real hardware and technical andsafety constraints. Additionally, a geographically distant battery systemwas incorporated in real time and it effectively followed market-drivensetpoints. The results confirm that a decentralized, agent-based marketcoordination model facilitates flexible integration of physical energy systems.Plug-and-play functionality, heterogeneous control strategies, andinterconnection across regions are collectively offered by the framework,thereby providing a robust path to smart energy communities.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
700 1 _ |a Hernengel, Natascha
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Xhonneux, André
|0 P:(DE-Juel1)8457
|b 2
700 1 _ |a Holtwerth, Alexander
|0 P:(DE-Juel1)180106
|b 3
|u fzj
700 1 _ |a Hehemann, Michael
|0 P:(DE-Juel1)129857
|b 4
700 1 _ |a Hoppe, Eugen
|0 P:(DE-Juel1)171318
|b 5
700 1 _ |a Waczowicz, Simon
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Förderer, Kevin
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Hagenmeyer, Veit
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Müller, Dirk
|0 P:(DE-Juel1)172026
|b 9
909 C O |o oai:juser.fz-juelich.de:1044830
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)199719
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)8457
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)180106
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129857
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)171318
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)172026
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-4-20191129
|k IET-4
|l Elektrochemische Verfahrenstechnik
|x 0
920 1 _ |0 I:(DE-Juel1)ICE-1-20170217
|k ICE-1
|l Modellierung von Energiesystemen
|x 1
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IET-4-20191129
980 _ _ |a I:(DE-Juel1)ICE-1-20170217
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21