001044873 001__ 1044873
001044873 005__ 20250930132715.0
001044873 0247_ $$2doi$$a10.1109/TQE.2025.3596392
001044873 0247_ $$2WOS$$aWOS:001569673100001
001044873 037__ $$aFZJ-2025-03407
001044873 082__ $$a621.3
001044873 1001_ $$0P:(DE-Juel1)170099$$aHader, Fabian$$b0$$eCorresponding author$$ufzj
001044873 245__ $$aAutomated Charge Transition Detection in Quantum Dot Charge Stability Diagrams
001044873 260__ $$aNew York, NY$$bIEEE$$c2025
001044873 3367_ $$2DRIVER$$aarticle
001044873 3367_ $$2DataCite$$aOutput Types/Journal article
001044873 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1758524361_11804
001044873 3367_ $$2BibTeX$$aARTICLE
001044873 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001044873 3367_ $$00$$2EndNote$$aJournal Article
001044873 520__ $$aGate-defined semiconductor quantum dots require an appropriate number of electrons to function as qubits. The number of electrons is usually tuned by analyzing charge stability diagrams, in which charge transitions manifest as edges. Therefore, to fully automate qubit tuning, it is necessary to recognize these edges automatically and reliably. This article investigates possible detection methods, describes their training with simulated data from the SimCATS framework, and performs a quantitative comparison with a future hardware implementation in mind. Furthermore, we investigated the quality of the optimized approaches on experimentally measured data from a GaAs and a SiGe qubit sample.
001044873 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001044873 588__ $$aDataset connected to DataCite
001044873 7001_ $$0P:(DE-Juel1)176540$$aFUCHS, FABIAN$$b1
001044873 7001_ $$0P:(DE-Juel1)173094$$aFleitmann, Sarah$$b2$$ufzj
001044873 7001_ $$0P:(DE-Juel1)201385$$aHavemann, Karin$$b3$$ufzj
001044873 7001_ $$0P:(DE-Juel1)173093$$aSCHERER, BENEDIKT$$b4$$ufzj
001044873 7001_ $$0P:(DE-Juel1)133952$$aVogelbruch, Jan$$b5$$ufzj
001044873 7001_ $$0P:(DE-Juel1)169123$$aGeck, Lotte$$b6$$ufzj
001044873 7001_ $$0P:(DE-Juel1)142562$$aWaasen, Stefan van$$b7$$ufzj
001044873 773__ $$0PERI:(DE-600)3035782-2$$a10.1109/TQE.2025.3596392$$gVol. 6, p. 1 - 14$$p5500414 $$tIEEE transactions on quantum engineering$$v6$$x2689-1808$$y2025
001044873 8564_ $$uhttps://juser.fz-juelich.de/record/1044873/files/APC600697565.pdf
001044873 8564_ $$uhttps://juser.fz-juelich.de/record/1044873/files/Automated_Charge_Transition_Detection_in_Quantum_Dot_Charge_Stability_Diagrams.pdf$$yRestricted
001044873 8767_ $$8APC600697565$$92025-08-05$$a1200216394$$d2025-08-11$$eAPC$$jZahlung erfolgt$$zUSD 1995
001044873 909CO $$ooai:juser.fz-juelich.de:1044873$$popenCost$$pOpenAPC$$pVDB
001044873 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170099$$aForschungszentrum Jülich$$b0$$kFZJ
001044873 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173094$$aForschungszentrum Jülich$$b2$$kFZJ
001044873 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201385$$aForschungszentrum Jülich$$b3$$kFZJ
001044873 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173093$$aForschungszentrum Jülich$$b4$$kFZJ
001044873 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133952$$aForschungszentrum Jülich$$b5$$kFZJ
001044873 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169123$$aForschungszentrum Jülich$$b6$$kFZJ
001044873 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b7$$kFZJ
001044873 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001044873 9141_ $$y2025
001044873 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001044873 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001044873 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
001044873 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
001044873 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-03T10:39:05Z
001044873 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-03T10:39:05Z
001044873 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-03T10:39:05Z
001044873 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
001044873 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-12
001044873 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
001044873 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-12
001044873 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-12
001044873 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lIntegrated Computing Architectures$$x0
001044873 980__ $$ajournal
001044873 980__ $$aVDB
001044873 980__ $$aI:(DE-Juel1)PGI-4-20110106
001044873 980__ $$aAPC
001044873 980__ $$aUNRESTRICTED
001044873 9801_ $$aAPC