001     1044874
005     20250930132705.0
024 7 _ |a 10.1002/anie.202509932
|2 doi
024 7 _ |a 1433-7851
|2 ISSN
024 7 _ |a 0570-0833
|2 ISSN
024 7 _ |a 1521-3773
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-03408
|2 datacite_doi
024 7 _ |a 40629813
|2 pmid
024 7 _ |a WOS:001538912000001
|2 WOS
037 _ _ |a FZJ-2025-03408
082 _ _ |a 540
100 1 _ |a Ruan, Zilin
|0 0000-0002-3804-4573
|b 0
|e First author
245 _ _ |a Highly Structure‐Selective On‐Surface Synthesis of Isokekulene Versus Kekulene
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1758542347_8257
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The role of different facets of metal nanoparticles in steering reaction pathways is crucial for the design ofheterogeneous catalysts with superior selectivity. As a prominent class of reactions, transition-metal-catalyzed carbon-hydrogen (C─H) bond activation is widely used for the synthesis of base chemicals, modern organic materials, andpharmaceuticals. Here, we report orthogonal selectivity in intramolecular cyclodehydrogenation of a nonplanar cyclicprecursor steered by different facets of a copper single crystal. On the Cu(110) surface, the previously unknown cycloareneisokekulene forms with a high selectivity of 92%, whereas reaction on the Cu(111) surface exclusively yields kekulene(>99%). Combining scanning tunneling microscopy with CO-functionalized tips and density functional theory, we identifytwo adsorption geometries of the precursor, which react to the respective products. Isokekulene adopts two nonplanaradsorption configurations and exhibits strong molecule-substrate interactions, explaining its preferential formation onCu(110). This combined in-solution and on-surface synthesis approach represents an alternative route for the highlyselective synthesis of molecules that are challenging to synthesize and process via conventional methods.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
536 _ _ |a SFB 1083 A12 - Struktur und Anregungen von hetero-epitaktischen Schichtsystemen aus schwach wechselwirkenden 2D-Materialien und molekularen Schichten (A12) (385975694)
|0 G:(GEPRIS)385975694
|c 385975694
|x 1
536 _ _ |a DFG project G:(GEPRIS)511561801 - Manipulierung von 2D Supraleitung und Majorana Zuständen auf der Nanoskala (511561801)
|0 G:(GEPRIS)511561801
|c 511561801
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Fan, Qitang
|0 0000-0002-2629-6212
|b 1
700 1 _ |a Reichmann, Alexander
|0 0009-0001-8189-3853
|b 2
700 1 _ |a Kang, Faming
|0 0009-0004-8781-3035
|b 3
700 1 _ |a Naumann, Tim
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Werner, Simon
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kleykamp, Olaf
|0 0009-0008-5658-5729
|b 6
700 1 _ |a Martinez-Castro, Jose
|0 P:(DE-Juel1)177811
|b 7
700 1 _ |a Lüpke, Felix
|0 P:(DE-Juel1)162163
|b 8
700 1 _ |a Haags, Anja
|0 P:(DE-Juel1)174294
|b 9
700 1 _ |a Bocquet, François C.
|0 P:(DE-Juel1)167128
|b 10
700 1 _ |a Kumpf, Christian
|0 P:(DE-Juel1)128774
|b 11
700 1 _ |a Soubatch, Serguei
|0 P:(DE-Juel1)128790
|b 12
700 1 _ |a Sundermeyer, Jörg
|0 0000-0001-8244-8201
|b 13
700 1 _ |a Puschnig, Peter
|0 0000-0002-8057-7795
|b 14
700 1 _ |a Tautz, F. Stefan
|0 P:(DE-Juel1)128791
|b 15
700 1 _ |a Gottfried, J. Michael
|0 0000-0001-5579-2568
|b 16
700 1 _ |a Wenzel, Sabine
|0 P:(DE-Juel1)190628
|b 17
|e Corresponding author
773 _ _ |a 10.1002/anie.202509932
|g p. e202509932
|0 PERI:(DE-600)2011836-3
|n 36
|p e202509932
|t Angewandte Chemie / International edition
|v 64
|y 2025
|x 1433-7851
856 4 _ |u https://juser.fz-juelich.de/record/1044874/files/Angew%20Chem%20Int%20Ed%20-%202025%20-%20Ruan%20-%20Highly%20Structure%E2%80%90Selective%20On%E2%80%90Surface%20Synthesis%20of%20Isokekulene%20Versus%20Kekulene.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1044874
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0002-3804-4573
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 0000-0002-2629-6212
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 0009-0001-8189-3853
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 0009-0004-8781-3035
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 0009-0008-5658-5729
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)177811
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)162163
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)174294
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)167128
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)128774
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)128790
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 13
|6 0000-0001-8244-8201
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 14
|6 0000-0002-8057-7795
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)128791
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 16
|6 0000-0001-5579-2568
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 17
|6 P:(DE-Juel1)190628
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-16
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-16
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ANGEW CHEM INT EDIT : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-16
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-16
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2024-12-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2024-12-16
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANGEW CHEM INT EDIT : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-16
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21