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Abstract
Increasing levels of climatic warming are expected to affect the global development of energy
consumption. The cooling degree day (CDD) is one of the climate-driven indices that captures the
impact of climate on energy demand. However, little is known about the spatiotemporal trends of
CDD in relation to a changing climate and economy in West Africa and its main implications.
Hence, in order to analyze how energy demand could evolve, this study aims to assess the changes
in CDD under 1.5, 2.0, 2.5, and 3.0 ◦C global warming levels (GWLs), with and without
population exposure and trends under the two representative concentration pathways (RCPs) of
RCP4.5 and RCP8.5 for West Africa. A climate-reflective base temperature (T-base) is used and was
determined using a piecewise linear regression method. Seasonal electricity consumption was
derived using a decomposition feature. An ensemble of seven Global Climate Models (GCMs) were
used for the future temperature projections. The future population was based on shared
socioeconomic pathway outputs. Based on the analysis, the reported average T-base for the West
African region is 24 ◦C. An increasing CDD trend was identified in all of the RCP scenarios, but is
more pronounced in RCP8.5. RCP8.5 departs from the mean historical period of approximately
20% by 2100 with the standardized value. The same trend is observed under different GWLs as the
warming level increased and was most striking in the Sahelian zone. Population exposure to CDD
(labelled CDDP) increases with warming levels, but is more pronounced in highly agglomerated
areas. The CDDP index best captures the spatial representation of areas with high cooling demand
potential with respect to the demographic distribution. This study can serve to inform better
energy demand assessment scenarios and supply planning against the backdrop of changing
climate conditions in West Africa.

1. Introduction

Africa as a continent is the least contributor to
overall global energy related greenhouse gas emis-
sions (∼2%), while African countries are expec-
ted to be the most exposed to climate change
effect as reflected in the 2019 Africa Energy Out-
look (International Energy Agency (IEA) 2019).
Given this high exposure and the low adaptive

capacities of many countries across the continent,
knowledge about the potential impacts across sec-
tors, is therefore crucial for reducing the contin-
ent’s vulnerability and building resiliency (Inter-
governmental Panel on Climate Change 2014). All
sectors of development are impacted by climate
change, including the energy sector. In particular,
both energy supply and demand are subject to cli-
mate change due unprecedented change observed in
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various weather parameters (Schaeffer et al 2012,
Cronin et al 2018).

The continent is endowed with enormous renew-
able energy potentials including solar, wind and
hydropower, of which most are sources of energy
known for their high variability as a result of their
sensitivity to change in the average weather con-
dition (Cronin et al 2018). Furthermore, climate
change impact access to fossil fuel endowments, and
knowledge of them (Schaeffer et al 2012). A large
multi-ensemble of global climate models’ assessment
over Africa showed a continuous and significant
increase in mean temperature by end of the cen-
tury (Almazroui et al 2020). In addition, the study of
Zhang and Ayyub (2020) demonstrated that increas-
ing temperatures reduces the capacity and efficiency
of power generation, transmission, and distribution.
Considering that the latter infrastructure compon-
ents are essential for power delivery, the risk of power
outages is increased under climate change and could
result in serious economic effect for the continent.
Beyond the power sector, gas transmission systems
can be affected by factors such as floods, landslides,
other extreme meteorological events, and geological
hazards such as earthquakes and rockslides (Schaeffer
et al 2012).

Moreover, a warmer climate amplifies demand
owing to the need for cooling. These changes can
have profound economic implications by affecting
consumers through increased expenditure on energy
commodities, on companies via higher fuel consump-
tion and emissions in terms of fossil fuel use as well as
effects on overall decision making processes, priorit-
ies and conventional adaptation measures as exposed
by (Vincent et al 2019). Therefore, to ensure a holistic
view of climate impact on final energy use, in addi-
tion to climate uncertainty, socio-economic implica-
tions should not be overlooked but be incorporated as
exposed in the global analysis of Zhang et al (2021).

Climatic proxies for energy use in the literature
are based on observing changes in cooling degree days
(CDDs) and heating degree days indices, as a strong
correlation is found between electricity consumption
and degree days (Dowling 2013, Ciscar and Dowling
2014, Nateghi and Mukherjee 2017, Levesque et al
2018, Park et al 2018, van Ruijven et al 2019, Berardi
and Jafarpur 2020, Mastrucci et al 2020, Steinberg
et al 2020). As cooling and heating demand gener-
ally move in opposite directions, the net increase or
decrease in energy consumption largely depends on
a region’s demand dominance (Li 2018). In tropical
regions, for instance, heating is not required (Waite
et al 2017, Li 2018). Given that West African coun-
tries are in the tropics and exhibit no discernible heat-
ing signal, hot days will be the main climate driver of
electricity demand; hence, the CDDmetric was selec-
ted as a climate-driven demand proxy for this study.

Furthermore, the calculation of degree days
requires the use of a base temperature that varies

from one region to another. The base temperature is
defined as ‘the outside temperature above which the
demand for cooling units is needed in buildings to
maintain human comfort’ (Elizbarashvili et al 2018,
Mistry 2019).

Chen et al (2018) conducted an extensive review
of the different methodologies applied to determ-
ine the base temperature in the literature. Three
main cases were found: “‘(a) choosing the temper-
ature threshold arbitrarily; (b) referencing a pre-
vious study in the same or a neighboring region;
and (c) extracting it from a preliminary electricity-
temperature plot”’. In general, most studies use refer-
ence temperatures of 18 ◦C or 22 ◦C (Panigrahi and
Behera 2017, Shi et al 2018, Spinoni et al 2021, Abebe
and Assefa 2022).

Huang and Gurney (2016) conducted a sensit-
ivity study of balance-point temperature (base tem-
perature) in the U.S. and showed that the use of a
fixed value against a context-specific value, leads to
the overestimation of changes in energy consumption
inmost states. Their conclusion, could apply for other
study areas, too. Hence, the third option mentioned
above through a preliminary electricity-temperature
plot analysis is chosen for this study to derive a study-
area specific base temperature.

The first step in this study was to determine
climate-reflective (context-specific) base temperat-
ures for the West African region by analyzing sev-
eral countries’ base temperatures in different climatic
zones. This will help in obtaining a robust CDD
estimate that considers the regional climate system
and reduces bias. It represents an added value to
knowledge that this study provides compared to other
studies focusing on the region.

Although the study used a segmented approach
as recently explored in the literature (Chen et al 2018,
2019, 2020) and (Huang and Gurney 2016), it went
one step further by using the seasonal component of
energy consumption to refine the base temperature
determination.

Secondly, to our knowledge this is the first study
in the context of West Africa to assess the impact
of climate change on CDD using high-resolution cli-
mate and energy data in the quest of reducing asmuch
as possible bias.

Conversely, socio-economic factors are reflec-
ted through population considerations in CDD. Shi
et al (2018) showed that CDD projections, with and
without taking population factors into account, fea-
ture largely different indicators. Given this important
difference, a population weighted approach of degree
days is explored as well. High-resolution population
data based on shared socioeconomic pathways (SSPs)
(Jones and O’Neill 2016) were used to assess popu-
lation exposure to CDD. The SSPs were developed
by the research community and are part of a new
scenario framework for climate impact studies and
support mainly the Sixth Assessment Report (AR6)
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of the Intergovernmental Panel on Climate Change’s
(IPCCs).

Lastly, changes in cooling energy demand reflec-
ted by CDD in response to global warming levels
(GWLs) of 1.5, 2, 2.5, and 3 ◦C, with and without
population factor, were investigated. High-resolution
climate projection data were derived from NASA’s
Earth Exchange Global Daily Downscaled Projections
(NEX-GDDP) datasets under representative concen-
tration pathways (RCPs) of 4.5 and 8.5. The NEX-
GDDP has been shown to perform better in Africa
(Abiodun et al 2020), in contrast to the widely used
Coordinated Regional Climate Downscaling Exper-
iment datasets in climate impact studies including
those of (Stanzel et al 2018, Quenum et al 2019,
Sawadogo et al 2020).

The remainder of this paper is structured as fol-
lows. Section 2 presents the base temperature ana-
lysis and population-weighted calculation approach,
as well as the climate and energy data gathered and
processed. Section 3 discusses and presents the res-
ults. Section 4 provides a summary of the find-
ings. Supplementary materials and figures are also
presented.

2. Methods and data

2.1. Study area and climatic zones
This study was conducted in West Africa. West
Africa features three main climatic zones, namely: the
Sahelian, Soudanian, and Guinean (figure 1). Given
the differences in climate, people’s reactions to the
temperature in each zone differ.

The West African region is one the contin-
ent’s largest in terms of population (fastest-growing
regions with an average increase of 2.4% a year) and
faces a considerable electricity access deficit (IRENA
2015). In contrast, West Africa will likely lead the
rapid economic growth expected on the continent in
the coming years. Five out of the ten fastest-growing
economies in 2019 were in West Africa: Côte d’Ivoire
(the highest GDP growth rate: 7.3%), Ghana (7%),
Benin (6.4%), Senegal (6.3%), and Niger (6.3%)
(World Bank 2020). In spite of this, West Africa
and the continent as a whole is affected by climate
variability and climate change. Africa’s exposure rate
to increasing temperature has been faster than the
global average (IPCC 2021). This is likely to impact
the human response to electricity consumption. This
study also aims to investigate human exposure to
increasing warming.

2.2. Methodology
The overall methodological framework is summar-
ized in the flowchart presented in figure 2.

2.2.1. Climate data and GWLs
The climate data (daily maximum and minimum
temperatures) for the study were derived from

the high-resolution (0.25◦ × 0.25◦) NEX-GDDPs
dataset across the RCPs RCP4.5 and RCP8.5. The
dataset comprises 42 climate projections from 21
general circulation model (GCMs) runs for the
period from 2006 to 2100, which were calculated
within the Coupled Model Inter-comparison Pro-
ject Phase 5 (CMIP5), with a historical experiment
for each model from 1950 to 2005 (Bridget et al
2015).

The bias-correction spatial disaggregation
method was applied on the NEX-GDDP dataset to
overcome some limitations seen in global GCMs res-
ults (Jain et al 2019, Xu et al 2019). Data from seven
(7) downscaled GCMs were used in this study and
are presented in table 1. To maximize the robustness
of the analysis, the multi-model means (MMMs)
approach widely adopted in the literature (Yaro and
Hesselberg 2016, Quenum et al 2019, Sawadogo et al
2019) was employed, as it helped to better capture
the spatial variability and uncertainty of observations
than individual models Jain et al (2019), Gusain et al
(2020).

Given the limited number of weather stations
points over the study area, ECMWF atmospheric
reanalysis ERA5 datasets were used as an alternat-
ive, particularly for climate impact studies (Foli et al
2021). Currently, ERA5 data is available from 1950
with a 0.25◦ × 0.25◦ resolution (Hersbach et al 2020).
The ERA5 temperature data was accessed from (AWS
Open Data 2022). The Pearson correlation coeffi-
cient, root mean squared error, and mean absolute
percentage error are used to compare and assess GCM
results against ERA5 reanalysis data as used in similar
assessments in the literature (Yao et al 2012, Jain et al
2019, Kim et al 2020, Li et al 2020). A description of
each of the metrics is provided in the supplementary
file (table sup 1).

The climate model data were re-gridded to a reg-
ular latitude–longitude grid of 0.25◦ to match the
observation dataset using bilinear interpolation. The
GWL period was derived for each GCM in order to
assess the impact of global warming on CDD. The
GWL period is generally defined as a ‘30-year span in
which the climatology of the global mean temperat-
ure was higher than that of the pre-industrial baseline
period (1861–1890) by the targeted global warming
value’(Nikulin et al 2018, Abiodun et al 2020). In the
study, the targeted global warming values are 1.5, 2.0,
2.5, and 3.0 ◦C.

The warming period for each model was derived
from (Abiodun et al 2020) and are presented in
table 2. Given that all GWLs for each GCM were
achieved under RCP8.5, and for comparability pur-
poses, an impact analysis was conducted that con-
sidered this pathway.

The ensemble model mean per GWL was com-
pared against the control period (CtrlPeriod) from
1971 to 2000 in order to avoid overlapping years with
the GWL period.
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Figure 1. Climate zones in West Africa based on outputs of (ECOWAS Centre for Renewable Energy and Energy Efficiency 2017).

2.3. Electricity consumption data
Power consumption were obtained from local electri-
city utilities in the region with different temporal res-
olution. Table 3 provides a description of each dataset
with their spatial and temporal resolution. The sea-
sonal temperature and load profile of each country
information is shown in figure 4.

2.4. Base temperature determination and degree
day calculation
The degree day method is one of the most used
methods for predicting seasonal energy consumption
(Kalogirou et al 2014). The number of degree days
was derived by computing the difference between the
considered base temperature and the mean temper-
ature for the different countries using ERA5 data-
sets, whereas only positive values are considered
(Kalogirou et al 2014). The CDD was then calculated
as follows:

CDD=
n∑

i=1

(Tmeani −Tbase),

(for Tbase > Tmeani;CDD= 0)

(for Tbase < Tmeani;CDD= (Tmeani −Tbase))

(1)

(n: number of days in one year, Tmeani: mean temper-
ature of day i, and Tbase: base temperature, Shi et al
2018).

The base temperature for CDD is defined as
the outside temperature below which the build-
ing does not require cooling (Elizbarashvili et al
2018). The most widely used method in determin-
ing Tbase are the energy signature and performance-
line method (Krese et al 2012). For this analysis,
the energy signature approach was used because it
is more accurate than the performance lines as it

requires high resolution electricity consumption data
(Anjomshoaa and Salmanzadeh 2017). The base tem-
perature is found by plotting the electricity consump-
tion data versus the mean ambient temperature to
identify some breakpoints.

Within this plot the intercept from which the sea-
sonal electricity demand—due to the internal (e.g.
occupants, lighting, equipment) and envelope (e.g.
windows, doors, wall) gains, increases as temperature
increases represents the base temperature (Krese et al
2012, Bhatnagar et al 2018). Hence, the Tbase is the
breakpoint at which the lowest electricity consump-
tion is achieved assuming that no cooling is needed
(Chen et al 2018).

Notwithstanding that the base temperature can
also vary spatially due to building characteristics,
occupant profiles, and equipment usage (Huang and
Gurney 2016), this study focusses on the temporal
dimension of the base temperature.

To determine the region-specific base temperat-
ure capturing the climatic condition of the study
area, a decomposition approach and piecewise lin-
ear modelling were used. The reason that drives this
methodological approach through the decomposi-
tion procedure is on one hand to isolate the sea-
sonal variability of the electricity consumption from
the additional pattern in the overall consumption.
Some of these factors includes economics and exhib-
iting different pattern and noise. Noise could also be
linked to a sharp increase in demand for instance as
a result of a public holiday inducing irregular pat-
tern. Secondly, CDD is best to predict the seasonal
consumption as mentioned above and demonstrated
in the recent study of (Akara et al 2021), on the effects
ofweather on electricity consumption inWestAfrican
cities.
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Figure 2.Methodology framework.

Therefore, to retrieve the seasonal compon-
ent of the electricity consumption influenced by
climatic factor and seasonality, a decomposition fea-
ture method was employed (Rosenhead et al 1963).

The classical seasonal decomposition by mov-
ing averages module in stats version 4.1.2 pack-
age in R (R Core Team 2019) was used to decom-
pose the time series of electricity consumption into
its seasonal, trend, and irregular components (illus-
trated in figure 3). The time series of electricity con-
sumption are modelled as follows (Rosenhead et al
1963):

Y [t] = T [t] ∗ S [t] ∗ e [t] (2)

where T(t), S(t), and e(t) represent the trend, sea-
sonal, and error components, respectively, and t
each (hour/day). Each component of the time series
are derived following the steps described in Meyer
(2018). First, the trend component is determined
by using a moving average and is removed from
the time series T(t). Second, the seasonal compon-
ent S(t) is derived by averaging each time unit over
all periods and removed from the total electricity

5
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Table 1. Climate models used for this analysis and downloaded from NASA NEX—Registry of Open Data on AWS.

Institution Country Model name Resolution Time horizon

Centre National de Recherches
Meteorologiques, Centre Européen de
Recherche et Formation Avancées en
Calcul Scientifique

France CNRM-CM5 22 km 1980–2100

Organization/Queensland Climate
Change Centre of Excellence

Australia CSIRO-Mk3.6.0 22 km 1980–2100

Institut Pierre-Simon Laplace France IPSL-CM5A-MR 22 km 1980–2100
Atmosphere and Ocean Research
Institute

Japan MIROC5 22 km 1980–2100

Max Planck Institute for Meteorology Germany MPI-ESM-LR 22 km 1980–2100
Norway Consumer Council Norway NorESM1-M 22 km 1980–2100
Geophysical Fluid Dynamics Laboratory United States GFDL-ESM2M 22 km 1980–2100

Table 2. General circulation model depicting global warming levels of 1.5, 2, 2.5, and 3 ◦C derived from Abiodun et al (2020). John
Wiley & Sons. © 2019 Royal Meteorological Society.

1.5 2 2.5 3

NEX-GDDP models Resolution Experiment Start End Start End Start End Start End

CNRM-CM5 22 km RCP8.5 2015 2044 2029 2058 2041 2070 2052 2081
CSIRO-Mk3-6-0 22 km RCP8.5 2018 2047 2030 2059 2040 2069 2050 2079
IPSL-CM5A-MR 22 km RCP8.5 2002 2031 2016 2045 2027 2056 2036 2065
MIROC5 22 km RCP8.5 2019 2048 2034 2063 2047 2076 2058 2087
MPI-ESM-LR 22 km RCP8.5 2004 2033 2021 2050 2034 2063 2046 2075
NorESM1-M 22 km RCP8.5 2019 2048 2034 2063 2047 2076 2059 2088
GFDL-ESM2M 22 km RCP8.5 2020 2049 2037 2069 2052 2081 2066 2095

Table 3. Description of the electricity consumption data.

Country Spatial resolution Temporal resolution Source

Benin Country aggregate Hourly
(2015–2020)

Daily aggregate of
both country
(2010–2020)

CEB is a bipartite utility established under the
Benin-Togo Electricity Code responsible for
power generation, transmission and development
of electricity infrastructure for both countries
(ECREEE and WorldBank 2019a, 2019f).

Togo Country aggregate Hourly
(2015–2020)

Senegal Country aggregate Hourly (2017–2020) National Electricity Company of Senegal
(SENELEC) owns approximately 50% of
Senegal’s installed capacity, with the
remainder being generated independent
Power Producers (IPPs). SENELEC has a
monopoly on both the transmission and
distribution of electricity (ECREEE and
WorldBank 2019e).

Côte d’Ivoire Country aggregate Hourly (2017–2020) Ivorian Electricity Company (CIE) in
charge of electricity production,
transmission and distribution of
electricity throughout the country
(ECREEE and WorldBank 2019c).

Niger Region aggregates
(Niamey, Tillabery,
Dosso, Tahoua,
Maradi and
Zinder)

Hourly Load (2015–2020) Nigerien Electricity Company
(NIGELEC) is a public utility in charge of
production (with others IPPs) and has
complete monopoly over the
transmission and distribution of
electricity (ECREEE and WorldBank
2019d).

Burkina Country aggregate Hourly load (2018) National Electricity Company of
Burkina-Faso (SONABEL) responsible
for electricity production, transmission,
distribution, sales and imports (ECREEE
and WorldBank 2019b). Data obtained
from the author of (Sterl et al 2020).
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Figure 3. Example illustrating the trend, seasonal, and residual components of a monthly electricity consumption decomposed by
seasonal-trend decomposition derived from Reproduced from Zhang and Rui (2021). CC BY 4.0.

consumption time series afterwards, too. The remain-
ing part of the electricity consumption it the error
component.

The seasonal component is plotted against tem-
perature data. Breakpoints were suggested based on
an estimate of regression models in segmented rela-
tionships detected in the linear predictor (seasonal
electricity). For this analysis, the R package segmented
was used, and the estimation approach is extensively
discussed in (Muggeo 2003).

2.5. Population weighted approach using
projections consistent with the SSP scenarios
The CDDP helps to capture the population expos-
ure to CDD and assesses the impact of urbaniza-
tion on. Population data were obtained from the
global downscaled population base year and projec-
tion grids based on the SSPs, v1.01 (2000 – 2100)
(Gao 2020). The dataset is spatially disaggregated
at three level: global urban, rural, and total pop-
ulation. The population projections consist of ten-
year intervals from 2010 to 2100 and 2000 rep-
resenting the reference year with a resolution of
1 km, consistent with the SSPs narratives. Spatial
interpolation was performed between decades to
obtain a consistent annual development and sub-
set was done over the study area. The population in
2000 was used as a reference for the control period
from 1971 to 2000. The mean GWL population was
computed with respect to the time spans listed in
table 2.

The averaged values over 30 years of the popula-
tion are multiplied by the averaged cooling degree-
day values of MMM for each spatial cell to achieve
CDDP (Chen and Sun 2020, Spinoni et al 2021) per
GWL and by RCP pathways. Country-specific CDDP
was obtained by masking the CDDP gridded data
against country vector data (shapefile). The CDDP
unit is labeled [W◦Cday] which refers to a weighted
degree day.

In this study, the population under the SSP5 scen-
ario (growth-oriented world) is used given that all the
different warming levels in all GCMs were achieved
in RCP8.5 (table 2) and it is the SSP scenario where a
radiative forcing of 8.5 W m − 2 is projected by end
of the 21st century (O’Neill et al 2016).

3. Results and discussion

3.1. Base temperature across the studied areas
Over the study area, daily data were collected for
Benin, Togo, Côte d’Ivoire, Niger, and Senegal with
different time frames. Figure 4 shows the seasonal
trends in the temperature and load of the countries
mentioned above. Benin, Togo, and Cote d’Ivoire
are in the same climate zone, this explains why
they display the same seasonal temperature profile,
with two peaks in demand in March and Decem-
ber and the lowest record in August during the rainy
season.

This shows the direct influence of weather condi-
tions on consumer behavior. Over the Sahelian and
Soudanian climate zones, the same observation can
be made as Niger’s and Burkina-Faso’s temperature
seasonal trends are the same with respect to peak and
low periods of demand.

In contrast with the Guinean zone countries
(Benin, Togo, Ivory Coast), the temperature is much
higher, reaching a maximum country average of
approximately 38.6 ◦Caswemove up in latitude char-
acteristics of the West African climate system. The
temperature in Soudanian is warmer than that on
the Guinea Coast and the warmest in the Sahelian
(Ilori and Ajayi 2020). Peak loads were recorded dur-
ing April and October and were lowest during August
(figure 4).

However, in the case of Senegal, the average
temperature and load profile were largely differ-
ent because the internal sub-climate had a strong
influence on the average temperature. Most of the
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Figure 4. Seasonal load and temperature profile for Benin (2010–2020), Togo (2010–2020), Côte d’Ivoire (2017–2020), Niger
(2015–2020), Burkina-Faso (2018) and Senegal (2017–2020). In brackets are the period of data used for the plot.

electricity demand in Senegal is consumed in large
cities that border the west coast and have different
climate systems compared to the rest of the country,
which is influenced by the hot Sahelian climate, as
shown in figure 5.

Seasonal temperature profiles of synoptic weather
stations in big cities such as St Louis, Dakar, and Cap
Skiring areas (Menne et al 2012) follow the country
seasonal load profile and clearly indicate the influ-
ence and weight of big cities’ climate and demand
on the overall electricity consumption. This demon-
strates the disparity between the average country tem-
perature and load profile.

For each country, the temperature was plotted
against the seasonal component of the load profile
using the method described in the methodology
section. Breakpoints were estimated to infer the base

temperature using the R Segmented linear regression.
It provides through an iteration process, an estim-
ation of slopes and breakpoints along with stand-
ard errors that best fit the original dataset. Tbase
breakpoint is selected based on one of the following
two criteria. In the case that a ‘V’ shape is more or
less captured by the model, Tbase represents the tem-
perature at which the lowest electricity consumption
is observed in accordance to Chen et al (2018). In the
other cases, Tbase is located at the breakpoint where
electricity starts increasing as temperature increases.
The base temperature breakpoint for each country is
illustrated in figures 6 and 7 (right plot with dotted
vertical line) and summarized per climatic zone in
table 4.

This is then used in the CDD computation (see
figure 8).
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Figure 5. Seasonal trend of temperature per weather synoptic stations in Senegal, highlighted in red are temperature profile of big
cities (Menne et al 2012), Senegal population density of 2020 derived from (WorldPop and CIESIN 2018).

Table 4. Base temperature per country and climatic zone.

Countries Criteria Tbase (◦C) Avg. Tbase (◦C) Climate zone

Niger (Niamey) Breakpoint from which load
increases with temperature

24.10 24.10 Sahelian

Burkina ‘’V” shape and lowest electricity
achieved

25.82 24.465 Sudanian
Senegal 23.11
Côte d’Ivoire 23.68 24.37 Guinean
Benin-Togo 25.06
Mean 24.35

Note: Niamey region data used to represent the entire country of Niger; Benin-Togo represents bulk electricity

consumption for both countries.

Segmentedmodels output for each of the country
analyses are provided in table sup 7 to show the slope,
intercept and breakpoints found.

4. Model evaluation

Global climate models were evaluated by com-
puting the CDD with Tbase = 24 ◦C, determ-
ined previously over the control historical period
(1971–2000) in comparisonwith the observation data
(using ERA5 temperature data). The good perform-
ance of the climate models in spatial and temporal
scale allowed us to rely on them for future pro-
jections to measure the impact of climate change.
The performance analysis of the climate models is
presented in details in the supplementary results.

The Soudanian zone displayed a relatively high
Tbase compared with the Guinean and Sahelian
zones. We decided to use an average temperature of
24 ◦C to represent the West-Africa Tbase to accom-
modate all the data constraints and for simplicity
purpose.

As figure 8 shows, CDD is going to increase by an
average anomaly factor of 20% in RCP8.5, and 10% in
RCP4.5 by the end of the century as compared to the
historical period. The climatological average over the
historical period was approximately 1193.44 ◦Cday,
it will reach around 2072 ◦Cday and 2932 ◦Cday by
2100 in RCP4.5 and RCP8.5, respectively. In all scen-
arios, the results show that CDD is likely to increase
more than the historical period andmore than double
in RCP8.5.
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Figure 6. Load decomposition and breakpoints (red circles) per country, ∗Benin and Togo: combined daily electricity
consumption data was obtained from 2010–2020, Burkina (2018 data), dotted line shows the base temperature breakpoint.

However, it is worth mentioning that, until 2038,
the trend for both RCPs remained mostly identical or
very much closer. After 2038, RCP8.5 started increas-
ing faster than RCP4.5, which is a more stabilized
scenario. The gap grew even larger from 2080 to 2100
(figure 8).

4.1. Changes of CDD under the four different
warming thresholds
The changes in CDD under different GWLs were
assessed using the RCP8.5 scenario. A study by
Abiodun et al (2020) showed that for all mod-
els used in this study, all warming levels were
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Figure 7. Load decomposition and breakpoints (dashed line) per country (Senegal and Côte d’Ivoire).

Figure 8. Future trend of CDD over West-Africa from 2006 to 2100, Anomaly= 100∗[(Projection-observation)/standard
deviation (observation)]. Observation is the average CDDs from 1971 to 2000. The shading indicates the range of simulations
(maximum and minimum).

reached under RCP8.5 and this radiative for-
cing is suitable to explore the worst case scen-
ario (Vuuren et al 2011). Figure 9 presents CDDs

per GWLs (1.5, 2.0, 2.5 and 3.0 ◦C) and abso-
lute changes using the Multi Model Ensemble
(MME) mean.
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Figure 9. Cooling degree day per global warming levels and percentage changes.

The study area mean CDD is roughly 1193, 1629,
1845, 2065, 2266 ◦Cday, for 1.5, 2.0, 2.5 and 3.0 ◦C,
respectively. As the warming levels increase, CDD
increases in the order of 36%, 55%, 73% and 90% as
compared to the historical levels (figure 9).

In addition, by climatic zone, it can be observed
from figures 9 and figure sup 3, that the magnitude
of change is much more pronounced in Sahel than
that of other climatic zones and lowest in Guinean
zone. While in all warming levels, the mean in the
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Figure 10. CDD by country and GWL (1.5, 2.0, 2.5 and 3.0 ◦C) under RCP8.5; MME: multi-model ensemble means. Obs:
historical CDD.

Guinean zone is below the overall study area aver-
age (30% lower), in Soudanian and Sahelian zones,
an increase of 130% and 170% respectively above the
average is recorded (table sup 4).

Countries in the Sahel will have a higher CDD in
the future; therefore, an increasing energy demand
for cooling can be expected as warming increases
(figure 9). Likewise, the projection of Parkes et al
(2019) over Africa demonstrates an increasing intens-
ity of heat stress events in Sahelian Africa as GWLs
increase.

Furthermore, figure 10 sheds more light on this
observation, where countries with the highest num-
ber of CDD such as Mali, Burkina Faso, Senegal,
Mauritania, Niger, Algeria, and Chad, are located in
the Sahel. Under GWL 3.0 ◦C for example it is recor-
ded respectively, 3150, 2883, 2880, 2867, 2679, 2533,
2418 ◦C days (table sup 5). However, it is noteworthy
that these countries are some of the largest in the con-
tinent in terms of land area and population resulting
in high cumulative amounts at national level.

In all countries, CDD increases in all the warm-
ing levels and even more than 150% in some coun-
tries. In terms of changes comparedwith the historical
period, countries such as Liberia, Cameroon, Sierra

Leone, Central African Rep., Guinea and Morocco
display the highest relative change. For instance, con-
sidering a GWL of 3.0 ◦C, Liberia CDD is projected
to be 1215 ◦Cday, while it was 358 ◦Cday historic-
ally, representing a three times fold increase (table 5).
This shows that those countries will be highly exposed
to extreme temperatures compared to the past, and
therefore, it is likely that the energy demand required
for cooling will increase drastically in the projected
climate trend. However, to account for human expos-
ure to CDD, CDDP is required.

4.2. Impact of population weighting per country on
changes of CDD
The population-weighted approach of CDD (CDDP)
per country helps to measure the urbanization effect
on CDD values. The distribution of CDDP across
West Africa and perGWLwas computed and is shown
in figure 10. CDDP is more intense around big cit-
ies in West Africa, denoting a strong effect of concen-
trated areas compared to other areas (figures 11(b)
and (c)). Under GWL 3.0 ◦C cities such as Cotonou
(5% of Benin population in 2022), Bobo Dioulasso
(5% of Burkina-Faso 2022), Kano (2% of Nigeria
population 2022), Lagos (7% of Nigeria population

13
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Table 5. Relative change of cooling degree day by country per GWL as compared with the historical period [%].

Country MME 1.5 MME 2.0 MME 2.5 MME 3.0

Liberia 105% 151% 198% 240%
Cameroon 76% 122% 175% 226%
Sierra Leone 84% 122% 160% 195%
Central African Rep. 77% 114% 154% 191%
Guinea 72% 106% 144% 182%
Morocco 56% 90% 121% 154%
Cote D’Ivoire 62% 90% 119% 147%
Togo 44% 65% 86% 105%
Guinea-Bissau 36% 57% 80% 102%
Nigeria 42% 62% 82% 101%
Ghana 43% 62% 82% 100%
Libya 40% 59% 79% 98%
Benin 39% 58% 77% 94%
Burkina Faso 36% 52% 69% 85%
Gambia 33% 51% 68% 85%
Senegal 30% 46% 62% 78%
Chad 31% 46% 62% 75%
Mauritania 29% 45% 59% 73%
Algeria 29% 45% 60% 73%
Mali 28% 43% 58% 71%
Niger 26% 40% 53% 65%

Relative change= 100∗[(Warming—observation)/observation].

Figure 11. Spatial distribution of population weighted cooling degree days (CDDP) over West-Africa and by global warming levels
(1.5, 2.0, 2.5, 3 ◦C), (a) observed CDD (1971–2000) and under different GWLs, (b) observed CDDP (1971–2000) and under
different GWLs, (c) log. Transformation of (b), (d) change of CDDP under different GWLs (i.e. CDDP1.5-CDDP Obs), Rchange
(relative change= [CDDP 1.5-CDDP Obs/CDDP Obs]), W◦Cday (weighted degree day) MME: multi-model ensemble mean.

2022), and Dakar (19% of Senegal population 2022)
(United Nations 2019). These cities can be perceived
in figure 11(b). These areas are the hubs of higher
electricity demand and contribute significantly to the
overall national consumption.

Table 6 presents a descriptive statistic of CDDP
computed over the study area domain and shows this
strong disparity given the difference the large differ-
ence between the mean and the standard deviation
(std).

Statistically, the regional CDDP std computed
by warming levels are more than seven times greater
than the average for all the warming levels (table 6).
For instance, while the mean historical CDDP
was 246 074 W◦Cday, the std was approximately
182 003 W◦Cday. There is a huge gap between big
metropolises and the rest of the areas. Approxim-
ately 15% of grid points were above the CDDP mean
representing the largest spots (85th percentile in
table 6).
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Table 6. Descriptive statistics of population weighted cooling degree days over the study area (0◦N–30◦N; 20◦W–20◦E).

CDDP OBS CDDP 1.5 CDDP 2.0 CDDP 2.5 CDDP 3.0

MEAN 2.5× 104 5.1× 104 7.2× 104 9.1× 104 1.1× 105

STD 1.8× 105 3.8× 105 5.5× 105 7.0× 105 8.4× 105

10% 6.2× 101 1.4× 102 1.7× 102 1.9× 102 2.1× 102

75% 1.4× 104 2.9× 104 3.9× 104 4.8× 104 5.4× 104

80% 2.3× 104 4.7× 104 6.3× 104 7.8× 104 8.9× 104

95% 3.5× 104 7.0× 104 9.5× 104 1.2× 105 1.3× 105

MAX 9.8× 104 2.0× 105 2.9× 105 3.6× 105 4.3× 105

Figure 12. Population weighting of cooling degree-days per global warming levels under RCP8.5 and SSP5 population dataset.
CDDP Obs: historical CDDP (1971–2000), W◦Cday (weighted degree day).

Thus, strong disparities exist between some areas
and other regions. To obtain a smoother plot, log
transformations were applied to the CDDP to exclude
extreme values. The CDDP was more pronounced
in areas from 15◦N downward (figure 11(c)). Pop-
ulation dynamics in this sub-region and increas-
ingly warmer climate likely explain this distribu-
tion in figure 11(c), ranging from 1 to 8 Log10
W◦Cday. Other areas are below 4 W◦Cday, espe-
cially higher latitude (above 15◦N) in the Maghreb—
northern region of Africa. Moreover, as warming
levels increase, CDDP increases with a relative change
of 108%, 192%, 269%, and 335% respectively in
1.5, 2.0, 2.5 and 3.0 ◦C GWLs compared with the

historical period. This change is greater in coun-
tries such as Liberia, Sierra Leone, Nigeria Niger and
Equatorial Guinea (figure 11(d) and table sup 6).

Figure 12 presents CDDP per country and GWL.
Countries such as Nigeria, Togo, The Gambia,
Sierra Leone, Burkina Faso, Senegal, Ghana, Benin,
and Mali are projected to accumulate high CDDP.
Demand for cooling will likely be higher for these
countries.

In summary, even though there is a strong influ-
ence of regional climate on CDDP, as seen in figure 9,
the population adjusts this climate driven distribu-
tion. The result of the CDDP demonstrates that it
captures better areas known for high consumption in
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the study area. Therefore, it can be used to comple-
ment other factors to improve energy demand estim-
ate, which a topic for future research.

In accordance to recent studies (Shi et al 2018,
Spinoni et al 2021), CDD projections with and
without considering population differs spatially as
well as quantitatively. The spatial distribution of CDD
weighted with population is much more pronounced
in agglomerated areas with high population density.
Therefore, the energy systems will face an additional
demand for cooling needs as populations increase
and as the urbanization trend continue to rise with
increasing warming (Parkes et al 2019). The results
show that Nigeria has a larger CDDP and will likely
lead to greater future demand in the region espe-
cially in big cities. This observation is aligned with
the studies of Parkes et al (2019) and Deroubaix et al
(2021), where largest increase in CDD will occur in
densely populated regions, particularly in a country
like Nigeria.

5. Conclusion

This study aimed to reduce the uncertainty in the
estimation of CDDs in West Africa. By providing an
estimation of a context-specific Tbase, using high-
resolution bias-corrected climate model outputs and
electricity consumption data in various climate zones.
And explored the changeover different RCP scenario
and GWLs.

Given, the different climatic zone in West-Africa
one would expect large difference in the base temper-
ature per zone. But the results indicated close value
to 24 ◦C which is therefore considered for the entire
study area for the analysis.

The projected future increase in CDD exceeds in
all scenarios at least +120 ◦Cday (while +140 ◦Cday
in RCP8.5) annually as compared to past period
mean. The results obtained are in line with the study
of Deroubaix et al (2021) who are taking a Tbase of
22 ◦C showing a projected future increase exceeding
+300 CDD in large parts of the tropics, and exceed-
ing +400 CDD in Amazonia, including the Sahel, as
in Spinoni et al (2021).

The CDD increases with increasing warming
levels with a growth rate of about 36%, 55%, 73% and
90% in 1.5, 2.0, 2.5 and 3.0 ◦CGWL respectively com-
pared to the historical CDDs. The projected future
increase in cooling exceeds on average +435 ◦Cday
over all GWLs, and much more pronounced in the
Sahel followed by the Soudanian zone. Countries such
asMali, Mauritania, Burkina Faso, Senegal, andNiger
had the highest CDDs. This observation follows the
historical trend studied in Biardeau et al (2020) where
the highest CDDs globally are found in Northern
Africa along the Sahelian zone. Hence the Sahelian
zone will likely experience a high demand for cooling
needs, given climate projections. Guinean zonalmean

is lower compared with other climatic zones and as
well as below the study area mean.

The spatial distribution of CDDP is largely dif-
ferent from CDD (see figures 9 and 12). Although
the CDD shows the areas with a high accumulation
of degree days (based on surface temperature distri-
bution), the CDDP filters out spot areas that would
likely exhibit a high demand induced by population
distribution and exposure to a number of degree days.

As a result, the color distribution of the CDDP
plot is scattered and accentuated in only a few areas. A
larger CDDPwas observed in densely populated areas
and spots of high electricity consumption. Hence,
CDDP can allow to identify areas that are likely to
exhibit a high demand for cooling in the future.
CDDP would be a great input for assessing the
climate-economy impact of demand and its spatial
distribution.

Therefore, future demand assessments should
consider this index in addition to other factors.

6. Limitations and perspectives

The paper identifies areas that are expected to see
the greatest increase in energy demand for cooling
under different GWL. This information is crucial for
energy supply planner as this will help in determining
best the spatial distribution and operation of produc-
tion units to minimize losses to supply areas of high
consumption.

Another important factor that could add a duplic-
ative effect to expansion needs for energy infrastruc-
ture is the increasing rate of access to electricity
in the region, which might drive access to cooling
devices, thereby leading to a higher demand. This
is also highlighted in the discussion of the study of
Biardeau et al (2020), referring to Bangladesh, where
electricity access now reaches 80%, up from 20% in
2000. Moreover, recent projections of air condition-
ing showed southern and western African countries
will achieve significant penetration by 2050 (Davis
et al 2021, Falchetta and Mistry 2021). Several coun-
tries in West Africa such as Sierra Leone, Ghana and
Nigeria will depict several-fold increases in air condi-
tioning according to recent study projections (Davis
et al 2021). Whereby for Sierra Leone is projected to
develop from near 0% to 10% in 2050 (Davis et al
2021).

Furthermore, income is found to have a large
impact on adoption of air condition units (Davis et al
2021, Falchetta and Mistry 2021). Therefore, consid-
ering a combined effect of a warming climate and
West Africa region regaining its pre-covid economic
growth asmentioned in the introduction, it can result
in a considerable increase in cooling demand in the
upcoming years. Besides, differences in income levels
are a source of inequality and affects adaptive capa-
city to warming for low-income households and can
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result in negative implication on physical and mental
health, and productivity (Andrijevic et al 2021, Davis
et al 2021, Mastrucci et al 2022).

This aspect has started to be discussed and
appear in recent literature on implications for cool-
ing demand (Andrijevic et al 2021, Davis et al 2021,
Falchetta and Mistry 2021, Pavanello et al 2021,
Mastrucci et al 2022).

It is worth mentioning others factors that bias
CDD as a cooling potential measure such as, cross-
country variation of household sizes and building
construction type that are ignored in degree day used
in the study as indicated (Li et al 2019, Biardeau et al
2020, Andrijevic et al 2021) and can be furthered in
future research.

Combining the above factors including electri-
fication, technological factors, market penetration of
cooling devices and economic dynamics with CDDP
will likely provide a much more correct estimate
of cooling demands. Even as recent studies (Fal-
chetta and Mistry 2021, Mastrucci et al 2022) have
attempted to address this gap by combining several
factors including socio-economic with satellite data
to model spatially explicit estimates of potential cool-
ing demand, this is still an open research area that
needs to be further explored.

The analysis assumes seasonal component of the
electricity consumption is driven by only temperat-
ure although it follows the same temperature pattern.
Notwithstanding some others cyclical effects (non-
climatic) that this seasonal variation can embody but
not discussed in this study and future research can
explored. Limited years of electricity consumption
data were obtained from some utilities and this could
potentially affect energy signature output strength.

The study did consider having two countries per
climate zone to palliate to this lack of data. In addi-
tion, the study considers consistent data of Niamey
region to represent the entire country (Niger). The
above challenge showed the need of collecting high-
temporal resolution data to improve accuracy. Never-
theless, this study provides the basis for future study
with an estimate of Tbase for West Africa which
can supports climate related impact topics on energy
demand in the study area.

The degree-day projections in this study are based
on downscaled GCMs datasets from the CMIP5
experiment while CMIP6 has now been released. In
CMIP6 the main set of future climate projections
is based on the SSP-RCP framework (van Vuuren
et al 2012), defined and coordinated by the Scen-
ario Model Intercomparison Project (ScenarioMIP)
(Tebaldi et al 2021). This allows for further research
by having one dataset that includes both climate and
economic pathways in which internal climate features
have been improved.
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