001     1044889
005     20250922202049.0
020 _ _ |a 979-8-3315-2395-4
024 7 _ |a 10.1109/SMACD65553.2025.11092223
|2 doi
037 _ _ |a FZJ-2025-03423
041 _ _ |a English
100 1 _ |a Dietz Romero, Pau
|0 P:(DE-Juel1)204256
|b 0
|e Corresponding author
111 2 _ |a 2025 21st International Conference on Synthesis, Modeling, Analysis and Simulation Methods, and Applications to Circuits Design (SMACD)
|g SMACD
|c Istanbul
|d 2025-07-07 - 2025-07-10
|w Turkiye
245 _ _ |a Co-Simulation for Automated Optimization of Integrated Cryogenic Qubit Electronics
260 _ _ |c 2025
|b IEEE
300 _ _ |a 4
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1758524884_18435
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a One approach to scaling quantum computers requires large-scale integration of qubit control electronics at cryogenic temperatures close to the qubits to reduce the wiring bottleneck, signal latencies, and improve the modularity of the system. Finding optimized specifications by accurately simulating the qubit-electronics interface allows optimal budgeting of resources (heat dissipation, area) for scalable quantum computers. We propose a systematic and efficient design flow for the optimization of integrated electronic circuits using a co-simulation methodology that covers the entire development process from the concept phase to transistor-level design. As a use case, we choose the shuttling of spin qubits inside quantum dots. The automated workflow optimizes the hardware parameters of the circuit during the design phase of the integrated circuit. Based on the simulated performance of our low-power circuits, we argue that well-designed integrated electronics can replace critically-scaling room-temperature electronics for the given use case.
536 _ _ |a 5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)
|0 G:(DE-HGF)POF4-5223
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Toprak, Caner
|0 P:(DE-Juel1)199845
|b 1
700 1 _ |a Duipmans, Lammert
|0 P:(DE-Juel1)186966
|b 2
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 3
700 1 _ |a Geck, Lotte
|0 P:(DE-Juel1)169123
|b 4
773 _ _ |a 10.1109/SMACD65553.2025.11092223
856 4 _ |u https://ieeexplore.ieee.org/abstract/document/11092223
909 C O |o oai:juser.fz-juelich.de:1044889
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)204256
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)199845
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)186966
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)142562
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)169123
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5223
|x 0
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Integrated Computing Architectures
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21