001     1044912
005     20251127202202.0
024 7 _ |a 10.1002/batt.202400568
|2 doi
024 7 _ |a 10.34734/FZJ-2025-03434
|2 datacite_doi
037 _ _ |a FZJ-2025-03434
082 _ _ |a 540
100 1 _ |a Weiling, Matthias
|0 P:(DE-Juel1)190810
|b 0
245 _ _ |a Comprehensive Study on Cell Components in High‐Voltage Pouch Cells with Lithium Perchlorate: Decomposition, Transesterification, Chlorination, Deposition, and Self‐Discharge
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1764230173_28328
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Battery development has traditionally focused on high energy and long lifetime cells, but there is now a shift towards their sustainability and safety. One example of this trend is the search for fluorine-free conductive salts. The overwhelming majority of lithium-ion conductive salts contain fluorine, which is critical regarding their environmental impact, sustainability, and toxicology. In this study, we perform a comprehensive investigation of the performance and aging mechanisms of cell components with LiClO4 as conductive salt in high-voltage NMC622‖Graphite pouch cells. The cells containing LiClO4 show poorer electrochemical performance compared to their LiPF6 equivalents. However, to the best of our knowledge, a mechanistic understanding of the effect of LiClO4 on the aging of electrode and electrolyte components for high-voltage cells is largely missing. Developing such an understanding will pave the way toward designing alternative salts to LiPF6, ultimately leading to fluorine-free and more sustainable battery cells. Our results show, that the chlorination of ethyl methyl carbonate at both methyl and ethyl groups and the formation of large (Liw)AlxOyClz composite deposits on the cathode surface result from perchlorate degradation at the cathode. This leads to increased cell resistance, reduced capacity retention, and accelerated degradation of the LiClO4-containing electrolytes.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a 1222 - Components and Cells (POF4-122)
|0 G:(DE-HGF)POF4-1222
|c POF4-122
|f POF IV
|x 1
536 _ _ |a Elektrolytformulierungen für Lithiumbatterien der nächsten Generation mit großer Energiedichte und hoher Beständigkeit (13XP5129)
|0 G:(BMBF)13XP5129
|c 13XP5129
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Pfeiffer, Felix
|0 P:(DE-Juel1)188450
|b 1
|u fzj
700 1 _ |a Lechtenfeld, Christian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Stuckenberg, Silvan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Fehlings, Nick
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Frankenstein, Lars
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Küpers, Verena
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Wang, Jian-Fen
|0 P:(DE-Juel1)199048
|b 7
700 1 _ |a Nowak, Sascha
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Baghernejad, Masoud
|0 0000-0002-2754-6623
|b 9
|e Corresponding author
773 _ _ |a 10.1002/batt.202400568
|g Vol. 8, no. 4, p. e202400568
|0 PERI:(DE-600)2897248-X
|n 4
|p e202400568
|t Batteries & supercaps
|v 8
|y 2025
|x 2566-6223
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1044912/files/Batteries%20Supercaps%20-%202024%20-%20Weiling%20-%20Comprehensive%20Study%20on%20Cell%20Components%20in%20High%E2%80%90Voltage%20Pouch%20Cells%20with%20Lithium.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/1044912/files/Supplementary%20Information.docx
909 C O |o oai:juser.fz-juelich.de:1044912
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190810
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)188450
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)199048
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1222
|x 1
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DEAL: Wiley 2019
|0 PC:(DE-HGF)0120
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BATTERIES SUPERCAPS : 2022
|d 2025-01-07
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BATTERIES SUPERCAPS : 2022
|d 2025-01-07
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2025-01-07
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
920 1 _ |0 I:(DE-Juel1)IMD-4-20141217
|k IMD-4
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-4-20141217
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21