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For planar architectures, surface code-based quantum error correction is one of the most promising approaches
to fault-tolerant quantum computation. This is partially due to the variety of fault-tolerant logical protocols
that can be implemented in two dimensions using local operations. One such protocol is the lattice surgery-
based logical state teleportation, which transfers a logical quantum state from an initial location on a quantum
chip to a target location through a linking region of qubits. This protocol serves as a basis for higher-level
routines, such as the entangling cnot gate or magic state injection. In this work, we investigate the correctability
phase diagram of this protocol for distinct error rates inside the surface code patches and within the linking
region. We adopt techniques from statistical physics to describe the numerically observed crossover regime
between correctable and uncorrectable quantum error correction phases, where the correctability depends on the
separation between the initial and target locations. We find that inside the crossover regime the correctability-
threshold lines decay as a power law with increasing separation, which we explain accurately using a finite-size
scaling analysis. Our results indicate that the logical state teleportation protocol can tolerate much higher noise
rates in the linking region compared to the bulk of the surface code patches, provided the separation between the
positions is relatively small.
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I. INTRODUCTION

Quantum computers hold the promise to efficiently solve
several problems that are intractable for classical computers.
Building such quantum devices that operate reliably in the
presence of unavoidable noise requires the implementation
of quantum error correction (QEC). For platforms where
qubits are restricted to a two-dimensional (2D) grid with
only nearest-neighbor connectivity, the surface code [1–4]
is the leading candidate for QEC due to its high threshold,
scalability, and planar connectivity. In recent years, promis-
ing experiments have realized QEC with the surface code
[5–10] using superconducting qubits and also fault-tolerant
logical computation has been demonstrated based on other
QEC codes using neutral atoms [11,12] and trapped ions [13].

Another advantage of the surface code for planar architec-
tures is the ability to realize a universal fault-tolerant logical
gate set in two spatial dimensions. Single-qubit Clifford gates
can be implemented by braiding the corners of surface code
patches [14–16], while multiqubit Clifford operations are re-
alized through multiqubit Pauli measurements. These Pauli
measurements are naturally available between neighboring
surface code patches via lattice surgery [17–20]. To achieve
universality, fault-tolerant initialization of magic states is re-
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quired, which can be accomplished using distillation protocols
[12,21,22], magic state cultivation [23], or other approaches
[24–26].

While lattice surgery-based operations have been inves-
tigated both experimentally [10,13,27–29] and numerically
[18,19,30,31], their behavior under spatially inhomogeneous
errors has remained relatively unexplored. In this paper,
we investigate this scenario for a specific protocol: lattice
surgery-based logical state teleportation. This protocol not
only enables beyond-nearest-neighbor connectivity between
logical qubits, but also serves as a basis for higher-level
protocols such as the entangling logical cnot gate or magic
state injection via lattice surgery. It also enables fault-tolerant
transmission of quantum information between different mod-
ules [30,31], making fault-tolerant quantum communication
available in distributed settings.

We investigate the lattice surgery-based logical state tele-
portation on a single quantum chip, where an arbitrary logical
state |ψ〉L is teleported from one location on the chip to an-
other. The logical circuit for this protocol is depicted in Fig. 1.
In our setup, the initial and target locations of the protocol are
separated by an intermediate linking region of width w. It is
known that in the bulk of surface code patches, physical qubits
and gates must operate below a certain threshold [3,4,32]
to achieve a correctable QEC regime, in which the logical
error rate can be arbitrarily suppressed by increasing the code
size. However, in the linking region, the error rates of qubits
and gates can exceed the bulk threshold while maintaining
correctability, as has been shown for lattice surgery with a
single line of noisy communication links [30].

We extend this result for a broad linking region with width
up to d by numerically determining the phase diagram of the
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FIG. 1. Illustration of the main concepts of this work. (a) The logical circuit of the measurement-based state teleportation protocol. The first

logical qubit is initialized in an arbitrary |ψ〉L state, while the second, at the target position, is initialized in |+〉L . A joint ZLZL measurement
and subsequently, an XL measurement on the first logical qubit is performed. If the error-corrected outcome of the ZLZL measurement is −1
an XL correction is applied to the second logical qubit, while if the outcome of the XL measurement is −1, a ZL correction is applied. (b) The
arrangement of surface code patches on a quantum chip. The initial distance-d patch (left) and the target distance-d patch (right) are separated
by a linking region containing w columns of data qubits. The error rate inside the bulks of the patches (gray area) is pbulk, while in the linking
region it is plink. In the figure, d = 5 and w = 3. (c) The numerically determined phase diagram of the lattice surgery-based teleportation of
the |+L〉 state under circuit-level noise. In the QEC

√
phase, scaling up the fault distance of the protocol (the code distance together with the

number of measurement rounds during the lattice surgery) decreases the probability of logical errors regardless of the linking region’s width. In
the QEC✗ phase, scaling up increases the logical error rate. In the crossover regime, the effect of scaling up on the logical error rate depends on
the width of the linking region. More precisely, threshold lines (orange) follow a power-law behavior: p∗

link (w, pbulk ) = p∗
3D + z(pbulk )w−1/ν3 .

For low plink rates, bulk errors determine the critical behavior. These errors are located in the three-dimensional (3D) spacetime volumes above
the surface code patches. On the contrary, for low pbulk rates the critical behavior is dominated by the link errors, with the corresponding
spacetime segment above the linking region. For w = 1, this segment is two dimensional, while for w = d , this volume is three dimensional.
This difference in the dimensionality results in an extended crossover regime, where the correctability depends on w. The spacetime regions
where dominating errors occur are depicted as white volumes for different parameter regimes.

logical teleportation protocol for varying error rates in the
bulk and linking region. We show that if the error rates are
below the bulk threshold p∗

3D, the teleportation protocol is
in the correctable (QEC

√
) phase, where increasing the code

distance suppresses logical errors arbitrarily, regardless of
the separation between logical qubits. Conversely, when bulk
error rates exceed p∗

3D, the protocol immediately transitions to
the uncorrectable (QEC✗) phase, where increasing the code
distance makes the performance worse.

Interestingly, for bulk error rates below p∗
3D, a crossover

regime emerges between QEC
√

and QEC✗ phases, where
correctability depends on the separation between the sur-
face code patches, w. The emergence of this regime can
be understood by analyzing the (2 + 1)-dimensional space-
time diagram representing the lattice surgery-based logical
state teleportation protocol (see Fig. 1). For low plink error
rates, the critical behavior is determined by the bulk errors,
which occur in three-dimensional spacetime volumes above
the surface code patches. In contrast, for low pbulk rates, the
link errors drive the transition; these errors occur on a two-
dimensional surface for w = 1, and in a three-dimensional
volume for w = d . This difference in the dimensionality

leads to distinct critical error rates, with p∗
2D > p∗

3D. For fi-
nite, but constant values of w, the dominant errors occur
in a quasi-two-dimensional spacetime volume, resulting in
w-dependent threshold lines following a power-law decay as
w → ∞ (see Fig. 1). We adopt techniques from statistical
physics to describe the crossover regime, and apply a finite-
size scaling analysis to derive this power-law decay of the
threshold lines.

We extend the results of Ref. [30] and show that the tele-
portation protocol tolerates higher noise in the linking region
than in the bulk, even for logical qubit separations larger
than w = 1. We also show that the decaying threshold lines
follow a power law as the separation between logical qubits
increases. These results may relax design constraints for quan-
tum chips that host multiple logical qubits, as it permits noisier
gates and physical qubits in the linking regions. This relax-
ation in quality requirements may allow for the placement
of noisier or noise-inducing components, such as drive lines
or readout lines in superconducting qubit hardware, in the
linking regions. Our results also suggest that when imperfect
fabrication causes inhomogeneities in qubit and gate quality
across a large quantum chip, it is advantageous to place logical
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FIG. 2. The three steps and the spacetime diagrammatic rep-
resentation of the lattice surgery-based logical state teleportation
protocol. (a) A surface code patch with X -stabilizers (red plaquettes)
and Z-stabilizers (blue plaquettes) is initialized in an arbitrary logical
state |ψL〉 on the left part of the chip. The logical operators are
depicted as red (XL) and blue (ZL) strings. The data qubits in the
linking region and on the right are initialized in |+〉. In the next
step, all the colored stabilizers, both inside the code patches (dark)
and within the linking region (light), are measured d times. Finally,
the data qubits in the linking region and on the left are measured
in the X basis. In this example, d = 3 and w = 1 as shown at the
bottom of the figure. (b) The spacetime diagram representation of
the protocol. Vertical surfaces on the left and right correspond to
X -type boundaries (red), while the front and back correspond to
Z-type boundaries, as only X -stabilizers are present on the left and
right, and Z-stabilizers on the front and back. The horizontal surfaces
are also X -type boundaries, because only X -stabilizer values can be
constructed from initializing/measuring in the X basis.

qubits in the higher-quality regions and connect them through
the noisier ones.

The rest of the paper is structured as follows: Section II in-
troduces the surface code and describes the steps of the lattice
surgery-based logical state teleportation protocol. Section III
qualitatively explains the structure of the phase diagram of
the teleportation protocol and explores the implications of the
dimensionality of different spacetime regions. Finally, Sec. IV
examines how the threshold depends on the separation of log-
ical qubits in the crossover regime and outlines the procedure
used to extract the phase diagram from the numerical data.

II. SURFACE CODES AND LOGICAL
STATE TELEPORTATION

In a distance-d rotated surface code patch [33], a single
logical qubit is encoded into d2 physical data qubits. The
d2−1 stabilizers of the code are measured with the help of
d2 − 1 auxiliary qubits through a syndrome extraction circuit
[3,4]. A rotated surface code patch is visualized in Fig. 2.
The logical XL and ZL operators correspond to the product of
single-qubit X and Z operators, respectively, acting on the top
row and left column of data qubits, as depicted in Fig. 2. It
is important to note that the product of a logical operator and

stabilizers is also a logical operator; e.g., logical XL (ZL) can
also be located on the bottom (right) side of the code.

To teleport a logical qubit encoded in a surface code patch
from one location of the quantum chip to another, we consider
a measurement-based circuit as shown in Fig. 1. A surface
code patch at the target location is first initialized in the |+〉L

state. Next, a joint ZLZL measurement is performed via lattice
surgery [17], and finally the logical qubit at the initial position
is measured in the XL basis. Up to Pauli corrections, this
circuit teleports arbitrary logical state |ψ〉L from the initial to
the target location.

The joint ZLZL measurement is performed as follows:
(1) The qubits in the linking region that assume the role

of data qubits in the extended rectangular patch during the
surgery are initialized in the |+〉⊗d·w state.

(2) d rounds of X- and Z-stabilizer measurements are per-
formed, covering all stabilizers defined within the rectangular
patch that includes both the original patches and the linking
region.

(3) The qubits in the linking region that assume the role
of data qubits in the extended rectangular patch during the
surgery, are measured in the X basis.

To determine the outcome of the logical measurement, the
Z-stabilizer measurement outcomes in the linking region must
be multiplied, yielding a result that can still be corrected by
the decoder [17]. This procedure relies on the fact that the
product of the Z-stabilizers in the linking region is exactly
the joint ZLZL operator. Multiple rounds of stabilizer mea-
surements are required to protect the logical measurement
outcome against errors that corrupt the readout of the stabi-
lizers. d rounds ensure the fault distance to be d for the whole
protocol [18,34,35].

In the measurement-based logical state teleportation proto-
col (see Fig. 1), the surface code patch at the target position is
initialized in the |+〉L state and the initial patch is measured
in the X basis, irrespective of the teleported state |ψ〉L. There-
fore, the initialization and final logical XL-measurement can
be integrated into the lattice surgery process without loss of
generality. Instead of initializing the |+〉L state, the data qubits
of the target patch are initialized in the |+〉⊗d2

state. This
approach is valid because the ZLZL measurement commutes
with the stabilizer measurements and after the lattice surgery
the stabilizers of this patch are measured anyway. Similarly,
rather than measuring the stabilizers of the initial patch after
the surgery, the data qubits are directly measured in the X
basis, with the X -stabilizer and XL operator values recon-
structed from these measurements. Our simplified procedure
is illustrated in Fig. 2.

Some interesting properties of surface code-based log-
ical protocols can be visualized with spacetime diagrams
[15,34,35]. These diagrams depict the time evolution of the
constituent surface codes by highlighting the spacetime loca-
tions of different boundary types. At X -type boundaries only
X stabilizers are present, while at Z-type boundaries only Z
ones. For our purposes, the spacetime diagram representa-
tion of the lattice surgery-based state teleportation protocol
(see Fig. 2) is important, because the dimensionality of the
spacetime regions where different errors can occur can be
visualized.
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III. THE STRUCTURE OF THE CORRECTABILITY
PHASE DIAGRAM

We numerically determine the phase diagram of the tele-
portation protocol, considering different error rates in the
linking region and inside the bulks of the surface code patches
(see Fig. 1). This section provides a qualitative explanation
of the phase diagram’s structure and its relation to the dimen-
sionality of various regions in the spacetime diagram of the
protocol.

We numerically simulate the logical state teleportation pro-
tocol at the circuit level using STIM [36]. In our error model,
each gate is followed by a single- or two-qubit depolarizing
channel, and qubit initialization and measurements may also
fail. All three error mechanisms occur with the same proba-
bility, pbulk within the surface code patches and plink in the
linking region. Although this error model does not accurately
capture any specific real device, we expect that the findings of
this work will remain qualitatively unchanged under a more
realistic noise model, as our simplified model, which is a
standard benchmark and the most widely used circuit-level
noise model in the QEC literature, includes all the essential
ingredients of general circuit-level noise processes. Specifi-
cally, we simulate the fault-tolerant teleportation of the logical
|+〉L state. Here, the protocol is preceded by the fault-tolerant
initialization of |+〉L on the left patch. This is realized by
the initialization of the |+〉⊗d2

state followed by a stabilizer
measurement round. Similarly, at the end of the protocol, a
fault-tolerant measurement is performed in the XL basis on the
teleported state. This is realized by a stabilizer measurement
round after the surgery and a final measurement of the data
qubits of the right patch in the X basis. In Appendix A, we
discuss the teleportation of the logical |0L〉 state in detail. We
use minimum weight perfect matching (MWPM) [4,37–39]
to decode the syndrome produced by the stabilizer measure-
ments of the protocol. Our STIM circuits and all the data are
publicly available in Ref. [40].

When one of the error rates, either pbulk or plink, is fixed,
the transition from the correctable to the uncorrectable regime
can be characterized by a threshold value in the respective
other, unfixed error parameter. This statement holds only if
the fixed error rate is sufficiently small to ensure that the
success probability for the logical teleportation undergoes a
phase transition. For low plink rates, the errors in the bulk will
dominate the transition, and these errors are located in the
spacetime regions above the surface code patches. Because
the number of measurement rounds is scaling together with
the code distance, the size of these spacetime volumes is
approximately d × d × d . Conversely, for low pbulk rates, the
transition is dominated by the errors in the linking region.
These errors are located in the spacetime region above the
linking region with the size w × d × d . For the smallest pos-
sible w = 1 this is a two-dimensional surface, while for w

scaled together with d this is a three-dimensional volume. The
relevant spacetime regions for different parameter regimes are
shown in Fig. 1.

Examining the dimensionality of the relevant spacetime
regions provides key insights into the structure of the phase
diagram. The threshold value depends on the dimensionality
of the associated spacetime region: For a two-dimensional

TABLE I. The dimensionality of the relevant spacetime re-
gion and the corresponding threshold value for different parameter
regimes. For low plink rates, the relevant spacetime region is three
dimensional, regardless of w. Conversely, for low pbulk rates, the
relevant region can be two dimensional when w = 1.

The fixed error
parameter

Linking region’s
width

Relevant
spacetime

region Threshold

plink � p∗
3D w = 1 3D p∗

3D

w = d 3D p∗
3D

pbulk � p∗
3D w = 1 2D p∗

2D

w = d 3D p∗
3D

surface, the threshold p∗
2D is much higher than the threshold

p∗
3D for a three-dimensional volume [30,32,41]. For exam-

ple, under phenomenological noise with MWPM decoding
p∗

3D ≈ 2.9% and p∗
2D ≈ 10.3% [32]. This dimensional anal-

ysis explains the sharp transition from the QEC
√

phase to the
QEC✗ phase for small plink, since the relevant spacetime re-
gion is consistently three dimensional, regardless of w. It also
clarifies the boundaries of the crossover region: When w = d ,
the link error threshold is the three-dimensional threshold,
p∗

3D, while for w = 1, it corresponds to the two-dimensional
threshold p∗

2D. The connection between the threshold value
and the dimensionality of the relevant spacetime region is
summarized in Table I. For constant w > 1, the link error
threshold falls between p∗

3D and p∗
2D. The precise dependence

on w is detailed in Sec. IV.
When both link and bulk errors approach their respective

threshold values, the entire spacetime diagram becomes rele-
vant. This leads to a slight decrease in the threshold values,
resulting in curvature of the phase boundaries, as reported in
Ref. [30].

IV. FINITE-SIZE SCALING
AND THE CROSSOVER REGIME

Correctability transition of QEC codes can, in many cases,
be related to phase transitions of classical disordered statisti-
cal mechanical models [4,32,42–47]. This connection enables
the application of techniques from statistical physics to in-
vestigate the correctability phase diagram. In this section,
we employ a finite-size scaling analysis to characterize the
behavior of threshold lines within the crossover regime, a
method that has already been used in the context of QEC [48].

For finite system sizes, the failure rate of the logical state
teleportation protocol not only depends on strength of the
underlying physical errors, but also depends on the geomet-
rical parameters of the spacetime diagram, d and w. Under
the assumptions of finite-size scaling, which is well moti-
vated by the underlying statistical mechanical mapping, the
logical error rate collapses into a single-variable scaling func-
tion, where the scaling variable incorporates the geometrical
parameters and the physical error rate. Using this universal
collapse, we derive the w dependence of the shifting threshold
in the crossover regime. Furthermore, we detail the procedure
used to extract the threshold values from the numerical data.
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FIG. 3. The universal collapse of the logical error rate. In panel (a) for a fixed plink = 0.1% and for w = 1, we determine the bulk noise
threshold and ν3 using the three-dimensional scaling function, Eq. (3). In panel (b), we determine the link noise threshold and ν3 for pbulk =
0.1% and w = d using Eq. (3). In panel (c), we show the link noise threshold and ν3 for pbulk = 0.1% and w = 1 using Eq. (4). In panel
(d), we display the critical parameters of the crossover regime for pbulk = 0.1% using Eq. (7). The data collapse is shown for code distances
d = 17, 21, 25, 29, in all subplots. In panel (d), we analyze the different widths 9(•), 13(�), 17(�), and 21(�) for each distance.

For the sake of completeness, we first outline the finite-size
scaling of a three-dimensional volume with linear size d and
physical error rate p [32]. The results of this analysis apply
when the relevant region of the spacetime diagram is a three-
dimensional volume, where errors occur with probability p.
Note that this can be either plink or pbulk depending on the
region. The key assumption of finite-size scaling is that for
sufficiently large system sizes, the logical error rate depends
only on the fraction of length scales:

pL(p, d ) = f (d/ξ3D). (1)

Here, ξ3D represents the system’s correlation length, which
diverges near the threshold as

ξ3D ∼ (p − p∗
3D)−ν3 . (2)

This leads to the scaling form of the logical error rate in a
d × d × d region:

pL(p, d ) = �3D((p − p∗
3D)d1/ν3 ). (3)

Similarly, the scaling form of the logical error rate in a two-
dimensional surface with linear size d and physical error rate

p is given by

pL(p, d ) = �2D((p − p∗
2D)d1/ν2 ), (4)

where the universal exponent ν2 and the nonuniversal thresh-
old differ from the three-dimensional case.

To describe a quasi-two-dimensional slab of size
w × d × d , the additional length scale w must be
incorporated. In this case, the finite-size scaling assumption
becomes

pL(p, d,w) = f (w/ξ3D,w/d ). (5)

In the limit of w/d → 0, the logical error rate should recover
the two-dimensional scaling form, Eq. (4):

pL(p, d,w)w/d→0 = �w[(p − p∗(w))d1/ν2 ], (6)

where the nonuniversal quantities such as the threshold and
the scaling function’s form can depend on w. Starting from
Eqs. (5) and (6), the scaling form of the logical error rate in
the limit of w/d → 0 can be derived [48] (see the derivation

033238-5



ÁRON MÁRTON et al. PHYSICAL REVIEW RESEARCH 7, 033238 (2025)

bulk

w

FIG. 4. The w-dependence of the threshold of the |+L〉 state
teleportation in the crossover regime for a fixed pbulk = 0.1% er-
ror rate. The continuous orange curve shows the crossover scaling
law, described by Eq. (8), with critical parameters p∗

3D = 0.86(1)%,
z = 0.047(2), ν2 = 1.58(7), and ν3 = 0.96(2). The region shaded in
light orange color indicates the associated error bars. The blue dots
represent threshold values determined independently for each width
value w.

in Appendix B), and it is given as

pL(p, d,w) = �(((p − p∗
3D)w1/ν3 − z)(w/d )−1/ν2 ). (7)

where z is a nonuniversal parameter of the scaling variable.
By comparing Eq. (7) with Eq. (6), the w dependence of the
shifting threshold is obtained as

p∗(w) = p∗
3D + zw−1/ν3 . (8)

We determine the critical parameters by collapsing the
numerical data into the appropriate scaling form of the logical
error rate. We identify the optimal parameters by minimizing
an objective function that quantifies the quality of the data
collapse. Details of this procedure are outlined in Ref. [49]
and in Appendix C. Depending on the dimensionality of the
relevant region in the spacetime diagram (Table I), we ap-
ply the corresponding scaling function Eq. (3), Eq. (4), or
Eq. (7) for 3D, 2D, and quasi-2D, respectively. Examples of
the resulting collapsed data for different parameter regimes
are shown in Fig. 3.

To show the w-dependence of the shifting threshold in the
crossover regime, we plot Eq. (8) for a fixed pbulk rate in
Fig. 4. The critical parameters (p∗

3D, z, and ν3) are determined
by collapsing the data as shown in Fig. 3. Additionally, in
Fig. 4, we display the threshold values determined indepen-
dently for each w using Eq. (6) as the scaling function.

Figure 4 demonstrates that the scaling law described by
Eq. (8) accurately captures the w-dependence of the shifting
threshold for large w. However, for w = 1, there is a signif-
icant difference between the true threshold value and the one
predicted by the scaling law. We suspect that this discrepancy
arises because, for small w, the finite-size scaling assump-
tion described by Eq. (5) breaks down. The true threshold
value, p∗

2D, is actually higher than the value predicted by the
crossover scaling law, p∗

3D + z (at least for the |+L〉 state

teleportation; results for |0L〉 can be found in Appendix A).
Overall, our results highlight, from a practical point of view,
the robustness of the state teleportation protocol against errors
in the linking region. Furthermore, from a methodological
perspective, they underline the suitabality of the chosen statis-
tical physics analysis to quantitatively describe the threshold
behavior and interplay of bulk and linking region error rates.

V. CONCLUSION

In this work, we have determined the correctability phase
diagram of a lattice surgery-based logical state teleportation
protocol. Here, we have analyzed the effect and interplay of
distinct physical error rates inside the bulk of the surface code
patches and in the linking region. Our analysis shows that for
low error probability in the linking region, a sharp transition
occurs between the correctable QEC

√
and the uncorrectable

QEC✗ phases, in which logical teleportation reliably succeeds
or fails, respectively. However, for low bulk error rates, the
QEC

√
and the QEC✗ phases are separated by an extended

crossover regime, where the overall correctability of the proto-
col depends on the separation w between logical qubits. Using
finite-size scaling arguments, we have found that the shifting
threshold within the crossover regime is well described by
the following crossover scaling law ansatz, p∗(w) = p∗

3D +
zw−1/ν3 .

These findings suggest that the lattice surgery-based log-
ical state teleportation protocol tolerates significantly higher
noise rates in the linking region compared to the bulk when the
separation between the initial and target patches is small. This
result may allow to relax quality requirements for quantum
processors with multiple logical qubits, enabling the use of
noisier qubits and gates in linking regions without compro-
mising correctability.

For large separations, this drastic increase in the threshold
vanishes. An open question is whether the lattice surgery
protocol can be modified to maintain a high threshold in the
linking region even for large separations. It will also valuable
to extend the presented analysis for the study of other, po-
tentially more complex, logical qubit operations needed for
scalable universal fault-tolerant quantum computation, such
as lattice-surgery-based cnot gate operations, or logical T-gate
injection protocols by means of lattice surgery approaches.
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APPENDIX A: TELEPORTATION
OF THE LOGICAL |0L〉 STATE

In the main text, we discuss our results only for the |+L〉
state teleportation. Here, we show the phase diagram and the
w-dependence of the shifting threshold for the |0L〉 state in
Figs. 5 and 6, respectively. While the qualitative features of
the two phase diagrams are similar, we highlight some minor
differences that may be of interest.

The exact locations of phase boundaries differ, because the
underlying protocol is not symmetric under exchanging X and
Z . The most noticeable difference is in the numerical val-
ues of p∗

2D (p∗
2D ≈ 7.2% for |+L〉 and p∗

2D ≈ 3.3% for |0L〉).
We believe this discrepancy arises because the logical error
strings responsible for the failure of |+L〉 state teleportation
are spacelike, whereas those causing the failure of |0L〉 state
teleportation are timelike above the linking region. Therefore,
the difference between the timelike and spacelike error rates
results in a much higher p∗

2D for the |+L〉 state teleportation.
As opposed to |+L〉 state teleportation, the crossover scal-

ing law overestimates the true phase boundary, as shown in
Fig. 6 for pbulk = 0.1%. Interestingly, the orange curves in
Figs. 4 and 6 predict the |0〉L and |+L〉 phase boundaries

bulk

w

FIG. 6. The w-dependence of the threshold of the |0L〉 state
teleportation in the crossover regime for a fixed pbulk = 0.1% er-
ror rate. The continuous orange curve shows the crossover scaling
law, described by Eq. (8), with critical parameters p∗

3D = 0.97(2)%,
z = 0.040(1), ν2 = 1.57(4), and ν3 = 0.97(2). The region shaded in
light orange color indicates the associated error bars. The blue dots
represent threshold values determined independently for each w.

to be close to each other; however, the true values differ
significantly. This observation shows that the difference be-
tween timelike and spacelike error rates has more drastic
consequences for w = 1 than for larger w’s.

We also observe a “bump” in the w = d curve in Fig. 5,
so the phase boundary for w = d is above the phase boundary
for w = 1, for low, but finite plink rates. This effect can also be
observed in the phase diagram of the |+L〉 state teleportation
protocol; however, there the gap between the phase boundaries
is much smaller. We believe this is a finite-size effect, as the
true threshold in the thermodynamic limit should not increase
with increasing either of the physical error rates.

APPENDIX B: DERIVATION OF THE SCALING
VARIABLE IN THE CROSSOVER REGIME

To derive Eq. (7) from Eqs. (5) and (6), we follow the
approach of Ref. [48]. We begin by rewriting Eq. (5) in an
equivalent form:

pL(p, d,w) = �((p − p∗
3D)w1/ν3 ,w/d ). (B1)

Taking w/d = 0, the logical error rate simplifies to a function
of a single scaling variable:

pL(p, d,w)w/d=0 = �′((p − p∗
3D)w1/ν3 ). (B2)

However, in the limit w/d → 0, the logical error rate can also
be expressed in the form of Eq. (6):

pL(p, d,w)w/d→0 = �w((p − p∗(w))d1/ν2 ). (B3)

From Eq. (B3), we know that �′((p − p∗
3D)w1/ν3 ) must be

singular at p = p∗(w). Denoting the singular point as

z = (p∗(w) − p∗
3D)w1/ν3 , (B4)

we can express the shifting threshold as

p∗(w) = p∗
3D + zw−1/ν3 . (B5)
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TABLE II. The numerically determined coordinates (plink, pbulk) and the corresponding critical exponents of the threshold lines for different
w’s for the teleportation of the |+L〉 state.

w = 1

plink(%) 7.23(6) 6.75(7) 6.33(8) 5.94(8) 5.52(9) 5.18(7) 4.74(8) 4.27(7) 3.4(1)
pbulk(%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
ν 1.7(1) 1.6(2) 1.5(1) 1.5(3) 1.6(2) 1.6(1) 1.7(2) 1.5(1) 1.5(1)

plink(%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
pbulk(%) 0.862(4) 0.861(4) 0.861(3) 0.860(4) 0.861(4) 0.862(3) 0.862(3) 0.863(3) 0.863(3) 0.864(4)
ν 1.09(6) 1.06(6) 1.05(6) 1.05(5) 1.08(6) 1.06(6) 1.04(5) 1.05(5) 1.02(5) 1.04(5)

plink(%) 1 1.5 2 2.5 3 3.5 4
pbulk(%) 0.863(3) 0.863(3) 0.854(3) 0.844(4) 0.820(5) 0.78(2) 0.75(2)
ν 1.03(5) 1.04(5) 1.03(5) 1.07(6) 1.13(8) 1.3(2) 1.3(3)

w = 3

plink(%) 2.30(2) 2.26(2) 2.20(2) 2.15(2) 2.11(2) 2.05(2) 1.99(2) 1.89(2) 1.67(5)
pbulk(%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
ν 1.5(2) 1.5(2) 1.5(2) 1.5(2) 1.4(2) 1.5(2) 1.4(2) 1.4(1) 1.6(3)

w = 5

plink(%) 1.69(1) 1.67(1) 1.64(1) 1.63(1) 1.60(2) 1.58(1) 1.55(1) 1.51(1) 1.38(2)
pbulk(%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
ν 1.5(1) 1.5(1) 1.5(1) 1.5(1) 1.6(2) 1.5(1) 1.5(1) 1.4(1) 1.4(2)

w = 7

plink(%) 1.45(1) 1.44(1) 1.42(1) 1.413(9) 1.41(1) 1.39(1) 1.37(1) 1.35(1) 1.26(2)
pbulk(%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
ν 1.55(9) 1.6(1) 1.6(1) 1.5(1) 1.47(9) 1.5(1) 1.49(9) 1.5(1) 1.5(1)

w = 9

plink(%) 1.318(9) 1.315(8) 1.303(9) 1.29(1) 1.295(9) 1.28(1) 1.28(1) 1.26(1) 1.19(1)
pbulk(%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
ν 1.56(9) 1.52(8) 1.46(8) 1.52(8) 1.52(8) 1.49(8) 1.45(9) 1.36(9) 1.4(1)

w = 11

plink(%) 1.238(8) 1.226(8) 1.229(8) 1.226(8) 1.23(1) 1.22(1) 1.214(8) 1.206(9) 1.15(1)
pbulk(%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
ν 1.60(9) 1.52(8) 1.50(8) 1.49(7) 1.6(1) 1.49(8) 1.42(8) 1.40(6) 1.43(8)

w = 13

plink(%) 1.189(9) 1.185(9) 1.180(9) 1.173(8) 1.175(9) 1.172(8) 1.172(9) 1.17(1) 1.131(8)
pbulk(%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
ν 1.52(9) 1.49(8) 1.55(9) 1.48(8) 1.52(8) 1.41(8) 1.47(8) 1.40(9) 1.40(8)

w = 15

plink(%) 1.15(1) 1.151(8) 1.144(8) 1.146(8) 1.144(8) 1.140(9) 1.139(8) 1.133(8) 1.10(1)
pbulk(%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
ν 1.49(9) 1.51(7) 1.54(9) 1.50(7) 1.50(7) 1.48(9) 1.46(7) 1.32(6) 1.35(9)

w = 17

plink(%) 1.127(9) 1.127(9) 1.123(9) 1.121(7) 1.117(8) 1.119(8) 1.119(8) 1.115(9) 1.09(1)
pbulk(%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
ν 1.54(8) 1.59(9) 1.54(9) 1.47(6) 1.50(8) 1.50(7) 1.42(7) 1.35(7) 1.4(1)

w = 19

plink(%) 1.11(1) 1.102(7) 1.101(7) 1.105(9) 1.100(8) 1.096(9) 1.100(8) 1.100(7) 1.073(9)
pbulk(%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
ν 1.5(1) 1.50(7) 1.48(7) 1.53(7) 1.5(1) 1.47(8) 1.42(7) 1.32(6) 1.29(8)

w = 21

plink(%) 1.094(7) 1.085(8) 1.09(1) 1.086(9) 1.09(1) 1.083(9) 1.078(9) 1.086(9) 1.072(9)
pbulk(%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
ν 1.54(8) 1.47(8) 1.56(9) 1.50(9) 1.5(1) 1.50(8) 1.36(6) 1.29(6) 1.32(7)
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TABLE II. (Continued.)

w = d

plink(%) 0.862(6) 0.861(5) 0.864(5) 0.864(4) 0.868(6) 0.881(4) 0.893(4) 0.911(4) 0.907(8) 0.75(6)
pbulk(%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ν 1.03(9) 1.01(7) 1.02(8) 1.04(7) 1.03(7) 0.99(8) 0.89(6) 0.79(6) 0.77(7) 1.5(6)

plink(%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
pbulk(%) 0.861(4) 0.861(4) 0.862(5) 0.865(3) 0.868(3) 0.872(3) 0.879(3) 0.887(3) 0.881(3) 0.82(2)
ν 1.06(6) 1.12(7) 1.05(7) 1.09(6) 1.06(6) 1.05(6) 0.98(5) 0.95(5) 0.93(6) 1.3(4)

TABLE III. The numerically determined coordinates (plink, pbulk) and the corresponding critical exponents of the threshold lines for
different w’s for the teleportation of the |0L〉 state.

w = 1

plink(%) 3.32(4) 3.25(6) 3.18(2) 3.10(3) 3.02(3) 2.93(3) 2.80(2) 2.69(3) 2.49(3) 2.13(2) 0 0.1
pbulk (%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.998(7) 0.978(7)
ν 1.8(4) 1.4(6) 1.6(1) 1.6(1) 1.6(1) 1.6(1) 1.6(2) 1.5(1) 1.6(1) 1.7(2) 1.2(2) 1.1(1)

plink(%) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
pbulk(%) 0.978(6) 0.976(6) 0.975(7) 0.972(6) 0.972(4) 0.972(5) 0.969(5) 0.969(5) 0.967(4) 0.969(5) 0.966(5) 0.962(5)
ν 1.0(1) 1.05(8) 1.0(1) 1.1(1) 1.02(7) 0.97(8) 1.04(8) 0.95(7) 0.95(8) 0.98(7) 0.94(4) 0.96(4)

plink (%) 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
pbulk(%) 0.961(5) 0.956(5) 0.953(4) 0.949(5) 0.942(6) 0.932(6) 0.921(7) 0.90(1) 0.883(8) 0.869(8) 0.84(2)
ν 0.93(4) 0.93(5) 0.95(3) 0.94(4) 0.97(5) 0.98(5) 0.99(6) 1.06(9) 1.04(7) 1.1(1) 1.1(1)

w = 3

plink(%) 1.96(4) 1.96(4) 1.94(5) 1.91(4) 1.88(3) 1.84(4) 1.81(4) 1.75(4) 1.69(2) 1.54(7)
pbulk (%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ν 1.5(2) 1.7(2) 1.7(3) 1.7(3) 1.6(2) 1.6(3) 1.6(3) 1.5(2) 1.6(2) 1.9(5)

w = 5

plink(%) 1.60(3) 1.60(3) 1.59(3) 1.57(3) 1.56(4) 1.54(02) 1.53(4) 1.49(3) 1.46(3) 1.36(3)
pbulk (%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ν 1.6(2) 1.7(2) 1.6(2) 1.6(2) 1.7(3) 1.5(2) 1.7(3) 1.5(2) 1.5(2) 1.6(3)

w = 7

plink (%) 1.45(3) 1.44(2) 1.43(3) 1.43(2) 1.41(3) 1.41(2) 1.39(3) 1.37(3) 1.34(2) 1.28(3)
pbulk (%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ν 1.6(2) 1.8(2) 1.6(2) 1.6(2) 1.6(2) 1.7(2) 1.5(2) 1.5(2) 1.4(2) 1.6(2)

w = 9

plink (%) 1.35(2) 1.35(2) 1.34(2) 1.34(3) 1.34(2) 1.33(2) 1.32(2) 1.30(2) 1.28(1) 1.22(1)
pbulk (%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ν 1.6(1) 1.7(2) 1.6(2) 1.6(3) 1.6(1) 1.6(1) 1.6(1) 1.5(1) 1.4(1) 1.4(1)

w = 11

plink (%) 1.29(2) 1.30(2) 1.29(2) 1.29(2) 1.28(2) 1.27(2) 1.26(2) 1.25(1) 1.25(2) 1.20(2)
pbulk (%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ν 1.6(1) 1.7(2) 1.6(2) 1.6(1) 1.6(1) 1.5(1) 1.5(1) 1.4(1) 1.4(1) 1.5(2)

w = 13

plink (%) 1.25(2) 1.25(1) 1.25(2) 1.24(1) 1.24(2) 1.24(2) 1.23(1) 1.23(2) 1.22(1) 1.18(1)
pbulk (%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ν 1.5(2) 1.5(1) 1.6(1) 1.5(1) 1.5(1) 1.5(2) 1.5(1) 1.5(2) 1.4(1) 1.42(9)

w = 15

plink (%) 1.22(2) 1.22(2) 1.23(2) 1.22(2) 1.21(1) 1.22(02) 1.21(01) 1.20(1) 1.19(1) 1.16(1)
pbulk (%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ν 1.5(1) 1.6(2) 1.6(1) 1.5(1) 1.5(1) 1.6(1) 1.51(9) 1.4(1) 1.3(1) 1.4(1)
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TABLE III. (Continued.)

w = 17

plink (%) 1.21(2) 1.21(1) 1.20(2) 1.20(2) 1.20(2) 1.20(2) 1.19(1) 1.19(1) 1.18(1) 1.15(1)
pbulk(%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ν 1.6(2) 1.6(1) 1.5(1) 1.5(1) 1.5(1) 1.6(2) 1.5(1) 1.5(1) 1.3(1) 1.3(2)

w = 19

plink(%) 1.19(1) 1.19(1) 1.19(1) 1.19(2) 1.19(2) 1.18(1) 1.17(1) 1.17(1) 1.17(1) 1.15(1)
pbulk(%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ν 1.5(1) 1.6(1) 1.5(1) 1.6(1) 1.6(2) 1.5(1) 1.48(9) 1.4(1) 1.31(9) 1.4(1)

w = 21

plink(%) 1.18(1) 1.17(1) 1.17(2) 1.17(1) 1.16(1) 1.17(1) 1.17(1) 1.16(1) 1.16(1) 1.14(1)
pbulk(%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ν 1.6(1) 1.5(1) 1.5(1) 1.5(1) 1.5(1) 1.5(1) 1.5(1) 1.42(9) 1.32(8) 1.4(1)

w = d

plink(%) 0.951(5) 0.949(6) 0.955(6) 0.953(6) 0.954(7) 0.960(5) 0.963(5) 0.969(4) 0.977(6) 0.976(7)
pbulk(%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ν 1.03(7) 1.1(1) 1.00(9) 1.1(1) 1.1(1) 0.99(9) 1.00(7) 0.98(8) 0.93(9) 1.0(1)

plink(%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
pbulk(%) 1.000(9) 1.002(8) 1.006(6) 1.006(7) 1.003(8) 1.008(5) 1.016(7) 1.026(6) 1.029(6) 1.004(6)
ν 1.1(2) 1.1(2) 1.1(1) 1.1(2) 1.1(2) 1.0(1) 1.0(1) 0.94(09) 0.84(09) 0.9(1)

To determine the scaling form of the logical error rate in the
limit w/d → 0, we first analyze the dependence of �w((p −
p∗(w))d1/ν2 ) on w, then express p∗(w) using Eq. (B5). Con-
sistency with Eq. (B1) requires that �w((p − p∗(w))d1/ν2 )
depends on w only through a multiplicative factor,

�w((p − p∗(w))d1/ν2 ) = �(wα (p − p∗(w))d1/ν2 ), (B6)

where α is to be determined. Substituting Eq. (B5), the scaling
variable can be expressed as

wα (p − p∗(w))d1/ν2 = wα (p − p∗
3D − zw−1/ν3 )d1/ν2 . (B7)

This expression can only be consistent with Eq. (B1) if α =
1/ν3 − 1/ν2. Herewith, we have derived Eq. (7), the scaling
form of the logical error rate in the limit w/d → 0.

APPENDIX C: DATA COLLAPSE

To determine the critical parameters by collapsing the data,
we follow a procedure outlined in Ref. [49]. In the investi-
gated cases, the logical error rate depends only on a scaling
variable, which is determined by a set of critical parameters c.
Consequently, the logical error rate can be expressed as

pL(x(c)). (C1)

The numerical data consists of logical error rates pi
L with

corresponding error bars σi for each set of {plink/pbulk, d,w}.
For a fixed set c, we calculate the scaling variable xi for each
set of {plink/pbulk, d,w} and order the data such that

xi−1 � xi � xi+1. (C2)

To determine the optimal critical parameters that yield the best
data collapse, we minimize the following objective function:

O(c) = 1

n − 2

n−1∑
j=2

(
pi

L − p̄i
L

�
(
pi

L − p̄i
L

)
)2

, (C3)

where p̄i
L and �(pi

L − p̄i
L ) are defined as

p̄i
L = (xi+1 − xi )pi−1

L + (xi − xi−1)pi+1
L

xi+1 − xi−1
, (C4)

�(pi
L − p̄i

L ) = σ 2
i +

(
xi+1 − xi

xi+1 − xi−1
σi−1

)2

+
(

xi − xi−1

xi+1 − xi−1
σi+1

)2

. (C5)

This procedure is equivalent to minimizing the deviation
(weighted by the variance) of each point (xi, pi

L ) from the line
determined by its adjacent points (xi−1, pi−1

L ) and (xi+1, pi+1
L ).

TABLE IV. The numerically determined critical parameters of the data collapse inside the crossover regime with w = 9, 11, 13, 15, 17, 19,
and 21, for the teleportation of the |+L〉 state.

pbulk(%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

p∗
3D(%) 0.87(2) 0.86(1) 0.87(2) 0.88(1) 0.89(2) 0.890(5) 0.91(1) 0.93(1) 0.94(1)

z 0.046(3) 0.047(2) 0.046(2) 0.047(2) 0.046(2) 0.046(1) 0.046(1) 0.046(3) 0.045(3)
ν2 1.6(1) 1.58(7) 1.58(4) 1.59(3) 1.56(4) 1.57(2) 1.58(3) 1.54(6) 1.6(3)
ν3 0.98(3) 0.96(2) 0.96(2) 0.94(2) 0.93(3) 0.93(1) 0.91(1) 0.89(3) 0.86(4)
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TABLE V. The numerically determined critical parameters of the data collapse inside the crossover regime with w = 9, 11, 13, 15, 17, 19,
and 21, for the teleportation of the |0L〉 state.

pbulk(%) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p∗
3D(%) 0.961(9) 0.97(2) 0.97(2) 0.96(2) 0.98(1) 0.982(6) 0.99(2) 0.997(8) 1.00(2) 0.99(1)

z 0.039(2) 0.040(1) 0.040(1) 0.037(3) 0.040(3) 0.040(1) 0.040(5) 0.039(1) 0.037(5) 0.040(2)
ν2 1.59(5) 1.57(4) 1.55(5) 1.61(7) 1.58(9) 1.55(4) 1.56(6) 1.61(4) 1.62(9) 1.60(8)
ν3 0.99(3) 0.97(2) 0.97(2) 1.01(4) 0.96(5) 0.95(2) 0.93(7) 0.94(2) 0.94(5) 0.87(2)

To estimate the uncertainty in the critical parameters, we
use a bootstrapping approach. We regenerate the dataset 100
times, assuming that the number of logical failures follows
a binomial distribution with mean N · pi

L, where N is the
number of shots. For each regenerated dataset, we determine
a corresponding set of critical parameters. The uncertainty in
each parameter is then estimated as three times the standard
deviation across these 100 trials.

APPENDIX D: NUMERICAL DATA

We summarize the coordinates and the corresponding crit-
ical exponents of the numerically determined points of the
threshold lines shown in Figs. 1 and 5 in Tables II and
III. Moreover, we summarize the critical parameters of the
crossover regimes for different pbulk error rates in Tables IV
and V.
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