001044946 001__ 1044946
001044946 005__ 20251031202034.0
001044946 0247_ $$2doi$$a10.1140/epjb/s10051-024-00859-1
001044946 0247_ $$2ISSN$$a1434-6028
001044946 0247_ $$2ISSN$$a1434-6036
001044946 037__ $$aFZJ-2025-03446
001044946 082__ $$a530
001044946 1001_ $$0P:(DE-Juel1)185942$$aRodekamp, Marcel$$b0$$eCorresponding author
001044946 245__ $$aSingle-particle spectrum of doped $\textrm{C}_{20}\textrm{H}_{12}$-perylene
001044946 260__ $$aHeidelberg$$bSpringer$$c2025
001044946 3367_ $$2DRIVER$$aarticle
001044946 3367_ $$2DataCite$$aOutput Types/Journal article
001044946 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1761916978_18476
001044946 3367_ $$2BibTeX$$aARTICLE
001044946 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001044946 3367_ $$00$$2EndNote$$aJournal Article
001044946 520__ $$aWe present a Hamiltonian Monte Carlo study of doped perylene $\textrm{C}_{20}\textrm{H}_{12}$  described with the Hubbard model. Doped perylene can be used for organic light-emitting diodes (OLEDs) or as acceptor material in organic solar cells. Therefore, central to this study is a scan over charge chemical potential. A variational basis of operators allows for the extraction of the single-particle spectrum through a mostly automatic fitting procedure. Finite chemical potential simulations suffer from a sign problem which we ameliorate through contour deformation. The on-site interaction is kept at U/κ = 2. Discretization effects are handled through a continuum limit extrapolation. Our first-principles calculation shows significant deviation from non-interacting results especially at large chemical potentials.
001044946 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001044946 536__ $$0G:(NRW)NW21-024-A$$aNRW-FAIR (NW21-024-A)$$cNW21-024-A$$x1
001044946 536__ $$0G:(GEPRIS)460248186$$aDFG project G:(GEPRIS)460248186 - PUNCH4NFDI - Teilchen, Universum, Kerne und Hadronen für die NFDI (460248186)$$c460248186$$x2
001044946 536__ $$0G:(GEPRIS)511713970$$aDFG project G:(GEPRIS)511713970 - SFB 1639: NuMeriQS: Numerische Methoden zur Untersuchung von Dynamik und Strukturbildung in Quantensystemen (511713970)$$c511713970$$x3
001044946 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001044946 7001_ $$0P:(DE-Juel1)188583$$aBerkowitz, Evan$$b1$$ufzj
001044946 7001_ $$0P:(DE-Juel1)165594$$aGäntgen, Christoph$$b2
001044946 7001_ $$0P:(DE-Juel1)132171$$aKrieg, Stefan$$b3
001044946 7001_ $$0P:(DE-Juel1)159481$$aLuu, Thomas$$b4
001044946 7001_ $$00000-0001-7641-8030$$aOstmeyer, Johann$$b5
001044946 7001_ $$0P:(DE-Juel1)195916$$aPederiva, Giovanni$$b6
001044946 773__ $$0PERI:(DE-600)1459068-2$$a10.1140/epjb/s10051-024-00859-1$$gVol. 98, no. 2, p. 36$$n2$$p36$$tThe European physical journal / B$$v98$$x1434-6028$$y2025
001044946 8564_ $$uhttps://juser.fz-juelich.de/record/1044946/files/s10051-024-00859-1.pdf$$yRestricted
001044946 8767_ $$d2025-08-11$$eHybrid-OA$$jDEAL
001044946 909CO $$ooai:juser.fz-juelich.de:1044946$$pOpenAPC_DEAL$$pVDB$$popenCost
001044946 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185942$$aForschungszentrum Jülich$$b0$$kFZJ
001044946 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188583$$aForschungszentrum Jülich$$b1$$kFZJ
001044946 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165594$$aForschungszentrum Jülich$$b2$$kFZJ
001044946 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132171$$aForschungszentrum Jülich$$b3$$kFZJ
001044946 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159481$$aForschungszentrum Jülich$$b4$$kFZJ
001044946 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195916$$aForschungszentrum Jülich$$b6$$kFZJ
001044946 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001044946 9141_ $$y2025
001044946 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001044946 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
001044946 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2024-12-16$$wger
001044946 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2024-12-16$$wger
001044946 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J B : 2022$$d2024-12-16
001044946 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
001044946 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
001044946 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
001044946 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
001044946 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
001044946 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-16
001044946 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-16
001044946 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-16
001044946 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
001044946 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-16
001044946 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001044946 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x1
001044946 980__ $$ajournal
001044946 980__ $$aVDB
001044946 980__ $$aI:(DE-Juel1)JSC-20090406
001044946 980__ $$aI:(DE-Juel1)IAS-4-20090406
001044946 980__ $$aAPC
001044946 980__ $$aUNRESTRICTED
001044946 9801_ $$aAPC