001     1044946
005     20251031202034.0
024 7 _ |a 10.1140/epjb/s10051-024-00859-1
|2 doi
024 7 _ |a 1434-6028
|2 ISSN
024 7 _ |a 1434-6036
|2 ISSN
037 _ _ |a FZJ-2025-03446
082 _ _ |a 530
100 1 _ |a Rodekamp, Marcel
|0 P:(DE-Juel1)185942
|b 0
|e Corresponding author
245 _ _ |a Single-particle spectrum of doped $\textrm{C}_{20}\textrm{H}_{12}$-perylene
260 _ _ |a Heidelberg
|c 2025
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1761916978_18476
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present a Hamiltonian Monte Carlo study of doped perylene $\textrm{C}_{20}\textrm{H}_{12}$ described with the Hubbard model. Doped perylene can be used for organic light-emitting diodes (OLEDs) or as acceptor material in organic solar cells. Therefore, central to this study is a scan over charge chemical potential. A variational basis of operators allows for the extraction of the single-particle spectrum through a mostly automatic fitting procedure. Finite chemical potential simulations suffer from a sign problem which we ameliorate through contour deformation. The on-site interaction is kept at U/κ = 2. Discretization effects are handled through a continuum limit extrapolation. Our first-principles calculation shows significant deviation from non-interacting results especially at large chemical potentials.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a NRW-FAIR (NW21-024-A)
|0 G:(NRW)NW21-024-A
|c NW21-024-A
|x 1
536 _ _ |a DFG project G:(GEPRIS)460248186 - PUNCH4NFDI - Teilchen, Universum, Kerne und Hadronen für die NFDI (460248186)
|0 G:(GEPRIS)460248186
|c 460248186
|x 2
536 _ _ |a DFG project G:(GEPRIS)511713970 - SFB 1639: NuMeriQS: Numerische Methoden zur Untersuchung von Dynamik und Strukturbildung in Quantensystemen (511713970)
|0 G:(GEPRIS)511713970
|c 511713970
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Berkowitz, Evan
|0 P:(DE-Juel1)188583
|b 1
|u fzj
700 1 _ |a Gäntgen, Christoph
|0 P:(DE-Juel1)165594
|b 2
700 1 _ |a Krieg, Stefan
|0 P:(DE-Juel1)132171
|b 3
700 1 _ |a Luu, Thomas
|0 P:(DE-Juel1)159481
|b 4
700 1 _ |a Ostmeyer, Johann
|0 0000-0001-7641-8030
|b 5
700 1 _ |a Pederiva, Giovanni
|0 P:(DE-Juel1)195916
|b 6
773 _ _ |a 10.1140/epjb/s10051-024-00859-1
|g Vol. 98, no. 2, p. 36
|0 PERI:(DE-600)1459068-2
|n 2
|p 36
|t The European physical journal / B
|v 98
|y 2025
|x 1434-6028
856 4 _ |u https://juser.fz-juelich.de/record/1044946/files/s10051-024-00859-1.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1044946
|p OpenAPC_DEAL
|p VDB
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185942
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)188583
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165594
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132171
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)159481
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)195916
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DEAL: Springer Nature 2020
|0 PC:(DE-HGF)0113
|2 APC
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2024-12-16
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2024-12-16
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR PHYS J B : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-16
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-4-20090406
|k IAS-4
|l Theorie der Starken Wechselwirkung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IAS-4-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21