
Vol.:(0123456789)

The Journal of Supercomputing (2025) 81:663
https://doi.org/10.1007/s11227-025-07145-6

tfQMRgpu: a GPU‑accelerated linear solver
with block‑sparse complex result matrix

Paul F. Baumeister1  · Stepan Nassyr1

Accepted: 1 March 2025
© The Author(s) 2025

Abstract
We present tfQMRgpu, a GPU-accelerated iterative linear solver based on the
transpose-free quasi-minimal residual (tfQMR) method. Designed for large-scale
electronic structure calculations, particularly in the context of Korringa–Kohn–Ros-
toker density functional theory, tfQMRgpu efficiently handles block-sparse com-
plex matrices arising from multiple scattering theory. The solver exploits GPU par-
allelism to accelerate convergence while leveraging memory-efficient sparse storage
formats. By unifying the solution of multiple right-hand side (RHS) block vectors,
tfQMRgpu significantly improves throughput, demonstrating up to a 3.5× speedup
on modern GPUs. Additionally, we introduce a flexible implementation framework
that supports both explicit matrix-based and matrix-free operator formulations,
such as high-order finite-difference stencils for real-space grid-based Green func-
tion calculations. Benchmarks on various NVIDIA GPUs demonstrate the solver’s
efficiency, in some cases achieving over 56% of peak floating-point performance for
block-sparse matrix multiplications. tfQMRgpu is open-source, providing inter-
faces for C, C++, Fortran, Julia, and Python, making it a versatile tool for high-
performance computing applications that can benefit from the unification of RHS
problems.

Keywords  Quasi minimal residual method · Iterative linear solver · Header-only
library · Block-sparse matrices · Multi-precision library · GPU acceleration

Mathematics Subject Classification  15-04 · 65F10 · 65F50

 *	 Paul F. Baumeister
	 p.baumeister@fz-juelich.de

1	 Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany

http://orcid.org/0000-0002-2005-4474
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-025-07145-6&domain=pdf

	 P. F. Baumeister, S. Nassyr 663   Page 2 of 22

1  Introduction

In the context of electronic structure calculation and, in particular density functional
theory (DFT) [1, 2], linear-scaling algorithms are needed to make geometries with mil-
lions of atoms affordable [3–5], however, most methods rely on the representation of
a sparse or truncated density matrix which limits their applicability to non-metallic
systems. The linear-scaling truncated Green function method has been developed from
the Korringa-Kohn-Rostoker (KKR) theory of multiple scattering [6, 7] and works for
materials with a band gap as well as metallic systems. The DFT package KKRnano
[8] shows promising results with respect to the accessible number of atoms and the
efficient usage of high-performance computing (HPC) installations. Different from
traditional wave function-based DFT methods using eigensolvers, the Green function
method requires the solution of many linear systems. Through the concept of screened
KKR [9] the non-Hermitian scattering path operator can be constructed in a block-
sparse fashion. The block structure stems from KKR’s localized basis, i.e. (�

max
+ 1)

2
numerical radial basis functions per atom. Often �max =3 is used and an additional fac-
tor 2 accounts for the non-collinear treatment of magnetism [10, 11] so 16 × 16 are
32 × 32 are typical block sizes. We refer to the block size as n. For each atom in the
system, n solutions of linear systems xi ∈ ℂ

N need to be found such that

for given vectors bi ∈ ℂ
N . The dimension N = nr n is the product of the number of

block rows nr ∈ ℕ and the number of rows per block n. Here, A ∈ ℂ
N×N is a block-

sparse matrix with blocks of size n × n representing an atom’s truncated view of the
global scattering path operator. Due to the block structure of A, it is advantageous to
group the column vectors xi into a dense block vector X ∈ ℂ

N×n and equivalently the
right-hand side (RHS) vectors bi into B ∈ ℂ

N×n . So now, X needs to be found such
that

We refer to Eq. (2) as a single atom problem. From the screened KKR theory it fol-
lows that only one block of B is nonzero.

The single atom problem in Eq. (2) can be solved using LAPACK’s zgesv/cgesv
[12] if we can afford to store a dense matrix representation of A and to pay the com-
pute costs of matrix factorization which scale as O(N3

) . However, the low number of
nonzero blocks in A suggests an iterative solving approach, in particular since the trun-
cation radius Rtr is increased in order to converge the results and the filling ratio of the
sparse matrix A decreases as R−3

tr
.

As iterative solver we chose a quasi-minimal residual (QMR) method which looks at
the residual vector

and seeks to minimize its norm ‖r‖2 by varying x . Here, r, x,b ∈ ℂ
N and Â is a lin-

ear operator which could be a general matrix A ∈ ℂ
N×N . The transpose-free quasi-

minimal residual method (tfQMR) has been investigated by Freund and Nachtigal

(1)A ⋅ xi = bi, i ∈ [1, n] ⊂ ℕ

(2)A ⋅ X = B.

(3)r = Â x − b

tfQMRgpu: a GPU‑accelerated linear solver with block‑sparse… Page 3 of 22  663

in the 1990s [13, 14] as modification of the GCS method. It is a variant of the Kry-
lov subspace methods and should therefore exhibit a similar convergence behav-
iour as other methods out of that algorithm family. The tfQMR method comes with
the striking advantage that is suitable for general, non-hermitian operators and no
adjoint operator needs to be provided which makes its usage less error-prone to pro-
gramming mistakes.

1.1 � Related work

The original Fortran77 implementations of the tfQMR method by Freund and
Nachtigal [13, 15] can be found at netlib.org/linalg/qmr/*utfx.f.
This work focuses on complex numbers only, so * stands for either c or z. Many
implementations of tfQMR can be found in the literature as, e.g. the Python
implementation scipy.sparse.linalg.tfqmr [16], however, most pack-
ages act on single vectors like Eq. (1) and cannot benefit to a comparable extent
from vectorization, graphical processing unit (GPU) acceleration nor from the per-
formance improvements through the arithmetic intensity of matrix-matrix multipli-
cations. Several software packages offer the treatment of sparse matrices on GPUs
[17], some of them specializing for block-sparse matrices [18, 19], while only some
libraries offer linear solvers for sparse problems [20]. For example NIVIDA’s own
cuSPARSE [21] which makes use of the block sparse row (BSR) format and offers
a GPU version of a direct (non-iterative) linear solver applicable for Eq. (2) and also
offers the ingredients for an iterative solver such as the GPU-optimized block matrix
times block vector multiplication. Various projects have been realized, e.g. by Cheik
Ahamed and Magoulès [22], however, not with a particular focus on block-sparse
matrices.

Liegeois et al. investigated [23] batched versions of GMRES to combine several
smaller problems that fit into a single GPU’s memory, however, to our knowledge,
none of the established software packages can benefit from combining different
atom problems with a partially shared matrix A as explained in the next sections.

The remainder of this paper is structured as follows:
Section 2 describes how the GPU bandwidth can be exploited better by simulta-

neously solving for several atom problems. Section 3 discusses the performance and
speedups on current GPUs. Section 4 shows a matrix-free instantiation of tfQM-
Rgpu and compares its performance to the block-sparse use case. Finally, Sect. 5
provides a summary and outlook. Technical details are given in the appendix
Section A.

2 � Throughput optimization

The iterative linear solver part solving the single atom problem, Eq. (2), has shown to
take up more than 90% of the total runtime of KKRnano on CPUs indicating a large
potential for GPU-acceleration and optimization. This work shows how tfQMRgpu
optimizes the throughput of such problems on GPUs by combining the problems of

	 P. F. Baumeister, S. Nassyr 663   Page 4 of 22

several atoms. Combining for two or more atoms results in a block-sparse result array
breaking the generality of the tfQMRgpu as a linear solver.

When considering the particular problem in Eq. (2) for two spatially adjacent atoms
we can observe that their respective views of the scattering path operator A0 and A1
have a large fraction of matrix blocks that are the same, c.f. orange matrix elements
in Fig. 1. Considering that memory bandwidth is the most valuable resource in HPC
we can save memory and compute time by solving the two block column problems
simultaneously. This requires the unification of the two dense block column vectors X0
and X1 ∈ ℂ

N×n into an array X. Then X becomes a block-sparse matrix since many but
not all nr block entries in X0 correspond in their physical position to block entries in X1 ,
c.f. green block column vector elements in Fig. 1. Note that if we increased the solution
array X into a dense matrix, any operator Â that is not block-diagonal (and hence trivial)
would lead to solutions that differ from X0 and X1 , the separate solutions of Eq. (2) for
the two atoms. Therefore, it is essential that X is a block-sparse result array and that any
product Y = A ⋅ X is restricted to the original sparsity pattern of X. This poses an essen-
tial difference to a general multiplication of two block-sparse operators.

For reasons of clarity we discussed combining the atom problems for two spatially
adjacent atoms so far. We will, henceforth, assume that mc ∈ ℕ problems are com-
bined. In order to have a large ratio of shared matrix blocks, it is advantageous to unify
the problems of a spatially compact cluster of atoms. This is a constraint towards the
load balancer of KKRnano required to exploit the optimization discussed here.

The core algorithm of tfQMR works for M = mcm RHS vectors where m ∈ ℕ is
the number of columns per block and mc ∈ ℕ is the number of atom problems unified,
i.e. the number of block columns in the block-sparse solution array, X. It simultane-
ously minimizes the norm of all M column vectors of the block-sparse matrix of residu-
als R defined as

The algorithm’s implementation is C++ templated with respect to the class
action_t that offers the action of Â on a set of M block-sparse trial vectors X as

(4)R = ÂX − B.

Fig. 1   Block-sparse matrix A (orange) with 8 × 8 blocks and block-sparse matrix X (green) with 2 block
columns. (Left) In the left column (col#0) of X row#7 is all zero, so the matrix view A

0
 has a 7 × 7 shape

ignoring all blocks of A in row#7 and col#7. (Right) For the right column (col#1) row#0 and col#0 of A
are ignored to produce a different 7 × 7 matrix view A

1
 . In this example from a 1D geometry 17 of 24

blocks of A are shared between the two views, A
0
 and A

1
 . 3D geometries can produce considerably larger

fractions of shared blocks

tfQMRgpu: a GPU‑accelerated linear solver with block‑sparse… Page 5 of 22  663

X, Y, R and B are stored in a block-sparse fashion using the BSR format. The BSR
format is a version of the compressed sparse row (CSR) sparse matrix format in
which each matrix entry is a dense ℂn×m block. In the case of A blocks are square,
ℂ

n×n . The BSR format is also used by cuSPARSE [21].
The number of block rows nr of all four, X, Y, R and B, is determined by the unifi-

cation of the mc problems.
Since we need to subtract B from Y to find the residuals R, c.f. Eq. (4), the spar-

sity pattern of X must have a nonzero block entry wherever B has one, but not vice
versa. With other words, B can have less nonzero blocks than Y. In fact, in the par-
ticular screened KKR use case only mc blocks of B are nonzero.

The details of the tfQMR algorithm and the discussion of its convergence behav-
iour are beyond the scope of this paper and we refer to [13, 15] for the mathematical
part. The tfQMR iterations stop when all M RHSs have converged.

3 � Application to block‑sparse operators

In this section we will present the applications of the tfQMR core algorithm outlined
in Sect. 2 with a linear operator Â that is defined as a block-sparse matrix A, the
original use case for which tfQMRgpu was developed.

Assume Â is given as block-sparse matrix A with blocks a ∈ ℂ
n×n it is favour-

able to define the block sizes of both, X and B, to be ∈ ℂ
n×m where m ∈ ℕ can be

chosen freely. Typically, we choose m = n , but for the sake of memory alignment,
m > n can be advantageous. Then, the action of A on X defined in Eq. (5) can be
implemented by an optimized matrix-matrix multiplication kernel that contracts two
blocks as

A result block y is only computed if the corresponding block x is nonzero in the
block-sparsity pattern of X. Note that in general the sparsity pattern of Y would have
more nonzero blocks than X. However, we restrict this by demanding that the spar-
sity pattern of Y matches that of X exactly and compute only those blocks of Y.

3.1 � Performance

tfQMRgpu comes with the executable bench_tfqmrgpu, a mini-app for bench-
marking. It supports two functionalities

•	 benchmark the multiplication of two block-sparse operators
•	 measure the performance of the full block-sparse solver.

(5)Y = Â.��������(X).

(6)yik =

n∑

j=1

aij xjk for i ∈ [1, n], k ∈ [1,m].

	 P. F. Baumeister, S. Nassyr 663   Page 6 of 22

The use case of a block-sparse operator A with relatively large blocks could ben-
efit from calling versions of gemm from cuBLAS or the batched gemm versions
for smaller matrices. However, for very small matrix block sizes, kernel overheads
are critical. We therefore investigated hand-written block-times-block multiplica-
tion kernels. The strategy is to make data reuse as much as possible. Exactly one
CUDA-block is started for each nonzero block y ∈ ℂ

n×m of the result operator Y.
The number of nonzero blocks in Y, nnzbY, equals to nnzbX since X and Y share
the same sparsity pattern. A pre-calculated index list tells which pairs (a, x) with
blocks a ∈ ℂ

n×n of A and blocks x ∈ ℂ
n×m of X contribute to a nonzero block y of

Y. The block multiplication kernel is launched with <<< �����, {m,n∕nacc, 1} >>>
and each CUDA-thread zero-initializes nacc complex numbers as accumulators in its
registers. The number of accumulators per CUDA-thread, nacc , is a tuning parameter
and for simplicity we assume nacc =1 here. We refer to the notation of Eq. (6). In each
step j a sub-group of CUDA-threads loads columns of a (length n, stored column-
major) and rows of x (length m, stored row-major) into the shared memory of the
GPU’s streaming multiprocessor (SM)s. In order to save shuffling operations, real
parts and imaginary parts are stored separately in memory allowing coalesced load
operations. Then, each CUDA-thread loads both, aij and xjk from shared memory,
performs the complex multiplication and adds the result to the accumulators. After
each contributing pair of blocks (a, x) has been visited, the content of the accumula-
tors is stored in y.

3.1.1 � Multiplication benchmark

As performance benchmark for the block-times-block multiplication, we use spar-
sity patterns with nnzbX= 4490 nonzero blocks in X and nnzbA= 13109 nonzero
blocks in A. This combination of patterns forsees npairs = 50526 block multiplica-
tions from a KKR use case. The sparsity of A is 13109∕10632 = 1.16% and of X is
4490∕(1063 ⋅ 16) = 26.4% . The problem stems from a unification of 16 atom prob-
lems. Operator A has in average 13.8 nonzero blocks per row and the solution X has
in average 280.6 nonzero block rows per column. For each single RHS column, in
average 11.25 nonzero blocks per row in A are relevant.

For a reliable performance benchmark, the kernel is executed 20 times in a row
and timings are averaged over five repetitions.

Some performance numbers are listed in Table 1 and the V100 performance is
also shown in Fig. 2. Note that the performance is best for blocks shaped 64 × 64 .
For small blocks the performance is lower as there, the limitation by the device
memory bandwidth is even stronger. For larger blocks the arithmetic intensity is
even higher, however, a different implementation of the block-times-block multipli-
cation would be necessary to achieve a higher performance. We would not be able to
accommodate all accumulators in a streaming multiprocessor’s register file without
costly register spills, so that a division into sub-blocks would be required. As sub-
blocking would increase code complexity, we recommend to apply other libraries for
the multiplication task with larger blocks ( ≫ 50).

tfQMRgpu: a GPU‑accelerated linear solver with block‑sparse… Page 7 of 22  663

We also benchmark the case of rectangular blocks, with m = 32 columns per
block. This matches the warp size of NVIDIA GPUs and benefits from a good ratio
of fully coalesced load and store operations. In Fig. 2 an increased performance for
the rectangular cases ( m > n , m = 32 ) can be seen for n ∈ {4, 8, 16} over square
block cases.

3.1.2 � Benchmark solving

To demonstrate the solving capabilities of tfQMRgpu we run the KKR problem
from Sect. 3.1.1 with a block size of 32 × 32 . It represents the Matsubara pole

Table 1   Performance data in
TFlop/sec for the block-times-
block multiplication kernel on
two different GPUs. The first
and third column show the
number of rows per block and
the number of columns per
block

V100 V100 A100 A100
Rows Cols float double float double

4 × 4 0.510 0.467 0.493 0.453
8 × 8 1.776 1.446 2.566 1.634
16 × 16 4.482 3.067 4.616 3.124
32 × 32 6.742 4.097 9.975 5.455
64 × 64 8.471 4.254 10.740 5.691
128 × 128 6.200 3.012 8.282 3.795
4 × 32 2.778 2.143 4.414 2.768
8 × 32 4.664 2.988 6.067 3.967
16 × 32 5.546 3.498 6.571 4.834

4 8 16 32 64 128
Number of rows per block

0

1

2

3

4

do
ub

le
 P

er
fo

rm
an

ce
 (

T
F

lo
p/

s)

0

2

4

6

8

flo
at

 P
er

fo
rm

an
ce

 (
T

flo
p/

s)
rectangular
float
double
square

Fig. 2   Performance data for the complex block-times-block multiplication on an NVIDIA V100 GPU.
Mind that the scale for double performance is on the left axis, i.e. the largest performance here is 4254
GFlop/s (56% of peak fp64 performance [24]) for 64× 64 blocks. All rectangular cases have 32 columns
per block

	 P. F. Baumeister, S. Nassyr 663   Page 8 of 22

[25] closest to the real axis, i.e. close to the Fermi energy of a metallic system
that leads to a moderately large number of iterations due to the large condition
number of A. See Fig. 4 for an impression of the spectrum of A and Fig. 3 for the
convergence. The tfQMR algorithm usually does not evaluate the residual norm
explicitly in every iteration as this requires the potentially costly computation of
AX − B . We call this probing. Typically, probing happens only when approach-
ing the convergence threshold. We forced the algorithm to probe in very iteration
to plot the residual norm in Fig. 3. Apparently, probing in every iteration helps
to accelerate the convergence slightly in terms of the number of iterations, how-
ever, every iteration comes with a 33 % performance penalty, so it is not acti-
vated by default. In double precision the problem converges to a residual norm
below 10−6 in 755 iterations requiring about 8.66 s on an NVIDIA V100 GPU.
This translates into a full solver performance of 2.355 TFlop/s, i.e. about 57% of
the pure multiplication performance (4.1 TFlop/s were achieved on a V100 for
32 × 32 blocks). The drop in performance is due to the linear algebra operations

Table 2   Runtime data in
seconds for the 32×32-block-
sparse fp64 solver of a KKR
problem with 287 rows per
column on different GPUs

GPU 1 RHS 16 RHSs Speedup

V100 0.919 s 8.663 s 1.70
A100 0.940 s 6.119 s 2.46
GH200 0.637 s 2.864 s 3.56

100 200 300 400 500 600 700
Iteration number

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
es

id
ua

l n
or

m

float
double
probe

Fig. 3   Convergence of the tfQMR algorithm for a mildly conditioned problem set from KKR multiple
scattering theory (condition numbers range from 160 to 655). Solving to a residual norm 10−6 took 755
iterations and 8.65 s on a V100. When the residual norm was evaluated in every iteration for this plot,
additional effort to compute AX − B required about 33% more time but convergence was detected nine
iterations earlier. Usually, probing occurs rarely, see red crosses. In a mixed precision approach, one
could run the first 200 iterations in float, however, for this particular problem convergence cannot be
reached with single precision

tfQMRgpu: a GPU‑accelerated linear solver with block‑sparse… Page 9 of 22  663

(axpy, xpay and inner products) which require the full device bandwidth but
contribute only little to the count of floating point operations.

As visible from Table 2, solving 16 unified problems only takes about 9.4× as
long (V100) as solving for a single RHS block column. The latter could also be
performed using other libraries. This results in a speedup for the unified problems
of 1.7× on a V100. More recent GPUs architectures offer even more floating point
performance relative to their GPU memory bandwidth. Here the effect of problem
unification becomes even more pronounced with the latest GH200 GPU being up to
3.56× faster than the non-unified reference, see Table 2. This confirms that tfQM-
Rgpu can save valuable resources by simultaneously solving the unified problems
of several RHS block columns.

The savings can be explained in analogy to the performance characteristics of
BLAS routines. As BLAS level 1 operations work on a pair of vectors the arithme-
tic intensity is low and performance is completely limited by the available device
memory bandwidth. BLAS level 2 comprises matrix–vector operations, i.e. some
data reuse on the vector can be exploited. Most HPC machines, however, are tuned
to maximize their BLAS level 3 performance, i.e. dense matrix multiplications. The
arithmetic intensity of dense (square) matrix multiplication grows linear with the
matrix dimensions so at a given size, there is enough compute to keep the floating
point units busy all the time. We can view the unification of RHS block columns in

Fig. 4   Eigenvalues of two different views of A from a KKR problem plotted in the complex plane. The
spectra were computed with the dense matrix eigenvalue solver zgeev from LAPACK. The two red
marks in the right subplot indicate the locations of extreme eigenvalues. Although the two spectra have
similar features, the condition numbers for these two cases differ by 25% due to the eigenvalues with the
smallest magnitude

	 P. F. Baumeister, S. Nassyr 663   Page 10 of 22

a similar way. Although, the block-multiplication requires some floating point opera-
tions, the block sizes are too small to saturate the floating point units compared to
their bandwidth requirements. When solving for a single RHS block column, the
situation is comparable to BLAS level 2. Unification of problems leads to an opera-
tion A ⋅ X , that resembles BLAS level 3 operations more in terms of their data reuse.

4 � Implicit operators

The tfQMR core algorithm introduced in the previous sections is templated with
respect to a C++ class action_t which as its most important property offers the
class method multiply performing the operation

where Â needs to be any linear operator that can accept the block-sparse data layout
of X and produce Y in the same layout. In Sect. 3 also Â was a block-sparse matrix
operator, i.e. action_t = blocksparse_action_t. In this section we will
showcase the application of the tfQMRgpu header-only library with a matrix-free
linear operator.

4.1 � Finite‑difference derivative

We try to solve for the Green function ĜE of the 3D Helmholtz equation

with E ∈ ℂ and r, r� ∈ ℝ
3 sampled on a uniform Cartesian real-space grid. Due to

the grid sampling, the right-hand side �3 becomes a unit operator. The Laplacian Δ
r

is the sum of second derivatives in all three spatial dimensions which, on the grid,
can be approximated fairly accurately by a 16th-order finite-difference (FD) stencil
[26]. The analytical solution of Eq. (8) is the retarded Green function of the point-
shaped wave source

which reduces to the electrostatic Green function 1/r for E=0 and to the screened
Yukawa interaction exp(−r

√
−2E)∕r for negative energies E. For positive energies,

the imaginary unit � in the exponential function leads to an oscillatory numerator
which is relevant for example in acoustics and optics (Helmholtz kernel).

The 3D FD-stencil is implemented in a three-pass procedure, i.e. the second
derivative in each spatial dimension is taken in a serial loop [27].

Note that the implementation of the 3D stencil operator is not part of the tfQM-
Rgpu repository [28] but can be found at github.com/real-space/Ang-
stromCube /include/green_kinetic.hxx for reference.

(7)Y = Â X

(8)
(
−
1

2
Δ

r
− E

)
GE(r, r

�
) = �

3
(r − r

�
)

(9)GE(r, r
�
) =

exp(−�r
√
2E)

r
with r = �r − r

��

tfQMRgpu: a GPU‑accelerated linear solver with block‑sparse… Page 11 of 22  663

4.2 � Performance

The FD-operator is implemented with a block size 64. Each block corresponds to a
cube of 4 ×4× 4 adjacent grid points. At construction time, geometry information is
gathered to clarify which cubes are neighbouring to each other. Similar to the KKR
use case, an approximate representation of the true solution ĜE is found by truncat-
ing the result Green function at a radius R such that r < R in Eq. (9).

4.2.1 � Finite‑difference derivative benchmark

We execute exactly nine iterations of the tfQMR algorithm where the FD-operator is
called twice per iteration. Each call to the multiply routines performs three FD-
passes for the three dimensions. In each pass, we need to read the array to be derived
and add to the result array (read-write), i.e. the memory needs to be transferred three
times. As we can omit the first read of the array, these are 11 instead of 12 opera-
tions. In total that means 198 times the memory volume of one Green function array
needs to be loaded or stored. Figure 5 shows the timings on a V100 GPU and total
memory requirements as functions of the problem size, here given by the cube of the
truncation sphere radius, R3 . The truncation radii are given in units of the grid spac-
ing, h. From the fit it seems that only 14.5% of the nominal maximum device band-
width ( 900GByte/sec [24]) is used for the derivatives. Also, when the total memory
requirement exceeds the V100 device limit of 16GByte, the unified memory system
uses the device memory as a cache and a part of the memory transactions will result
in page faults. The computation can still be completed, however, the performance is

10 50 100
Truncation Radius (h)

1

10
16 GByte
Time (sec), 1 RHS
Time (sec), 8 RHSs
Space (GB), 1 RHS
Space (GB), 8 RHSs
cubic

Fig. 5   Time and space requirements for nine tfQMR iterations in single precision as a function of the
truncation radius R. R is measured in units of the grid spacing h. The block size 4 ×4× 4 produces steps
for small truncation radii. Requirements follow a clear R3 power law. The curves for 8 RHS blocks are a
factor 8 higher and the steep increase in execution time occurs at a factor 2 smaller truncation radius

	 P. F. Baumeister, S. Nassyr 663   Page 12 of 22

reduced by orders of magnitude as the bandwidth towards the host memory becomes
a bottleneck. This lets the compute time explode around a truncation radius of 100
grid spacings for a single RHS block and already around 50 grid spacings for 2 ×2× 2
RHS block vectors in single precision, c.f. Fig. 5. Comparing the time needed for a
single RHS problem vs. 8 RHSs, we find a factor of 8.0. This indicates that for the
implicit operator—as the operator itself does not come with large data arrays—the
effect of RHS unification is negligible.

10 30 50 80 100
Truncation Radius (h)

1

10

100

#Iterations
Linear fit
16 GByte
Space (GB)
Cubic fit

10 30 50 80 100
Truncation Radius (h)

1

10

100

Runtime (sec)

R
4
 fit

Fig. 6   Space and time requirements for tfQMR solving with an implicit FD-operator in double preci-
sion as a function of the truncation radius R. The memory requirements follow a clear R3 power law
while the number of iterations increases linearly with R from 60 to about 500. Combined, the runtime
scales roughly with R4 . Around R=80, the V100 device memory limit of 16GByte is reached and the
execution time skyrockets

tfQMRgpu: a GPU‑accelerated linear solver with block‑sparse… Page 13 of 22  663

In comparison we can benchmark 18 executions of the FD-operator’s multi-
ply function alone. Here, we find a V100 bandwidth utilization of 568GByte/sec,
i.e. about 77% efficiency at a truncation radius R=100 h . This means that the tfQMR
iterations spend a considerable fraction of their execution time in other bandwidth-
limited linear algebra operations. Referring to Fig. 5, the case of a single RHS block
vector and R=100 h requires 3.25 s for 9 iterations, but only 0.61 s are needed for
18 operator calls, so the linear algebra fraction accounts for more than 81% of the
execution time.

4.2.2 � Benchmark solving

We execute the tfQMRgpu solver instantiated with a 64× 64 block size and dou-
ble precision complex numbers. The implicit operator is the FD-Laplacian from
Eq. (8) with E=0. Figure 6 shows how the number of iterations needed to converge
to a residual norm of 10−9 as a function of the truncation radius, R. The total GPU
memory requirement is 34kByte⋅(R∕h)3 . The solving time needed is roughly pro-
portional to R4 which is a product of the bandwidth-limited kernels that need O(R3

)
time for each iteration and a linear growing number of iterations needed for larger
problems (for E=0).

For energy parameters E other than zero, Fig. 7 shows the behaviour of the num-
ber of iterations needed until convergence. Negative energies or a positive imaginary
part (red line) lead to a sub-linear dependence. In particular for E=−10−1Hartree
(dash dotted green line) the solver operates deep inside the Yukawa regime and the
number of iterations saturates quickly with problem size. Positive energies, however,
exhibit a super-linear behaviour in terms of costs.

4.2.3 � Direct performance comparison

tfQMRgpu offers two ways to solve the Helmholtz problem from Eq. (8): We
can create a block-sparse operator with FD-coefficients or we can use the implicit
FD-operator discussed in the previous section which can avoid completely to load
matrix elements of A from device memory.

Here, we used a 16th-order FD-stencil, i.e. there are 8 nonzero coefficients
towards each of the six Cartesian directions ±x,±y,±z and one central coefficient.
Due to its lower arithmetic intensity the implicit FD-operator achieves only 437
GFlop/s, i.e. 5.75% of peak on a V100 GPU. Solving with the equivalent 64× 64
block-sparse operator performs about 3TFlop/s but only every 17th matrix entry is
nonzero and all matrix elements are real. In a direct performance comparison we
find that the implicit FD-operator performs about 3.6× more iterations per seconds.
Figure 8 shows how the residuals of both approaches shrink over time. The conver-
gence graphs exhibit slightly different features (comparing the solid red to the dotted
blue line) which might be related to differences stemming from summation order
artefacts, in particular as in both situations the energy parameter E=0, i.e. we try
to solve a nearly singular problem. The truncation radius for this direct comparison
was chosen as R=49 grid spacings.

	 P. F. Baumeister, S. Nassyr 663   Page 14 of 22

The tool tfqmrgpu_generate_FD_example shipped with tfQMRgpu
allows to create XML files describing block-sparse operators with FD-coefficients
choosing between 1D, 2D and 3D geometries, different block sizes and truncation

0 20 40 60 80
Truncation Radius (h)

0

100

200

300

400

500
E=10

-2

E=10
-3

E=0
0

E=-10
-3

E=i10
-2

E=-10
-2

E=-10
-1

Number of Iterations

Fig. 7   Number of iterations needed for tfQMR solving Eq. (8) to a residual norm of 10−9 as a function of
the truncation radius R. The number of iterations depends on the energy parameter E: It is a linear func-
tion of R for E=0 (black solid line), it saturates for E < 0 (Yukawa regime) and diverges for E > 0

0 5 10 15 20 25 30 35
Wall Clock Time (seconds)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

libtfQMRgpu.so, 64x64
tfQMRgpu::solve<FD>

Residuals, R = 49 h

Fig. 8   Convergence of the average residual in the FD-problem with two different approaches: the block-
sparse operator with 64 × 64 blocks as offered by the shared library libtfQMRgpu.so (solid red line)
takes about 3.6× as long to converge to a similar residual as an implicit FD-operator, a stencil deriva-
tive action (solid blue line) that makes use of tfQMRgpu::solve as a header-only library. The red
and blue dots are located where both approaches have the same iteration count (116 and 176, counts
are not shown) and a similar residual value. The dotted blue line copies the solid blue line but on a 3.6×
-stretched time axis

tfQMRgpu: a GPU‑accelerated linear solver with block‑sparse… Page 15 of 22  663

radii. The size of the XML input files is kept at a moderate level by storing only the
unique stencil blocks of the block-sparse operator A and providing an indirection
list. In memory, however, the block-sparse operator is uncompressed into a general
form. Hence it consumes a considerable part of the memory capacity and bandwidth
requirements. An optimization towards similar stencil operators with constant sten-
cil coefficients would be to incorporate the indirection list into the planning phase of
the multiplication of the two block-sparse operators, A and X.

5 � Summary and outlook

We present tfQMRgpu, a GPU-accelerated library designed to accelerate linear-
scaling KKR calculations. It offers iterative solving of linear equations using the
tfQMR algorithm. When unifying the linear problems of multiple RHS block vec-
tors, a block-sparse complex-valued solution vector set is required. The performance
of GPUs is leveraged to accelerate all operations possible. For the standard use case
of block-sparse operators, a shared library libtfQMRgpu.so can be built with
pre-selected combinations of block sizes when installing the software package.
Users may adjust and augment the list of available block sizes according to their
needs. Block-sparse matrices with very small blocks (block dimensions up to 50)
benefit from hand-written block-times-block multiplication CUDA kernels that can
make use of up to 56% of the available floating point performance of NVIDIA V100
and A100 GPUs while fully exploiting their generous bandwidth. The unified linear
problems exhibit a large potential of saving resources on the most recent NVIDIA
GPUs. Our showcase of 16 unified problems executed more than 3.5× faster on a
GH200 GPU compared to 16 single problems. This speedup can be explained by
the increased arithmetic intensity of matrix-matrix-multiplication compared to
matrix–vector-multiplication, although the vectors are in our case vectors of small
dense blocks.

Furthermore, we demonstrated how a custom CUDA C++ implementation of a
linear operator can be fed into the templated algorithm core tfQMRgpu::solve.
We demonstrated this matrix-free approach with a finite-difference stencil opera-
tor which outperforms the equivalent 64 × 64 block-sparse matrix operator by far.
Interfaces to C, Fortran, Julia and Python are available for the block-sparse
library. Sources, examples, tools and benchmarks are included in the open-source
software repository [28] at github.com/real-space/tfQMRgpu and the
zenodo archive [29].

5.1 � Outlook

tfQMRgpu is implemented in CUDA. A generalization would be port to HIP in
order to address both, NVIDIA and AMD devices.

A major performance improvement in particular when dealing with ill-condi-
tioned problems would be a proper preconditioner. For the application to KKR prob-
lems, a very effective block-circulant preconditioner using fast Fourier transforms

	 P. F. Baumeister, S. Nassyr 663   Page 16 of 22

has been tried [30], however such a preconditioner comes at the prices of increased
code complexity and inferior parallel scalability. Currently, the algorithm is pre-
pared for preconditioning but a general preconditioner is still missing. Suggestions
are welcome.

Since tfQMRgpu has been tested with single and double precision (fp64),
mixed-precision recipes could accelerate the convergence. In particular the first
iterations of many problems could benefit from being executed in float (fp32).
Furthermore, recent hardware versions of NVIDIA GPUs feature TensorCores
to contract small matrices. As also the GPU memory bandwidth has grown with
newer hardware generations it would be interesting to see if using TensorCores in
the block-sparse operator application could increase the performance even further.

In the case of stencils stored as block-sparse operators, some room for perfor-
mance improvement is given by compression. If the block-sparse stencils are inde-
pendent of the row index, as in our finite-difference showcase, an indirection list
could reduce the memory capacity requirement of A substantially and increase the
performance through higher L2-cache hit rates.

Since none of the performance optimizations for the block-sparse operator or the
matrix-free approach are specific to the tfQMR algorithm, it could be worthwhile
to try other iterative solving algorithms, such as, e.g. BCGROT, BiCGSTAB, or
GMRES, and to compare their convergence behaviours. In particular BCGROT has
demonstrated to deliver faster solutions than tfQMR for electronic structure prob-
lems [31].

Appendix

Memory usage

The tfQMR algorithm makes use of six additional arrays of the same size as X. Fur-
thermore, tfQMRgpu stores an array of random numbers always as floats. Since
the values are random, precision is not required here. The memory requirement of
the RHSs B can range between almost none (B fully determined by the index of the
unit vector) up to B and X having the same memory footprint. In total, the memory
requirement ranges between 7.5× and 9× the memory requirement of X, including
the memory of X itself. As a rule of thumb, about 10× the size of X is safe to assume.
Note that this memory count does not yet include any space needed for A.
tfQMRgpu offers a memory counting function which should be used before the

allocation of a GPU memory buffer. Internally, the buffer is managed avoiding any
call to gpuMalloc, a macro that maps to cudaMalloc.

Interfaces

The block-sparse use case (see Sect. 3) of tfQMRgpu is offered as a shared object
library libtfqmrgpu.so. In order to be useful to applications written in vari-
ous programming languages the following interfaces are offered.

tfQMRgpu: a GPU‑accelerated linear solver with block‑sparse… Page 17 of 22  663

C Interface

libtfqmrgpu.so is shipped with a C interface. Before building the library,
the file allowed_block_sizes.h can be modified to contain the desired
block size combinations (n, m) that lead to corresponding C++ template instantia-
tions at compile time. Furthermore, complex numbers based on single and double
precision (float and double) are supported. See Appendix A.3 for an overview
of tfQMRgpu’s application programming interface (API).

To lower the adaption barriers the single function APIs tfqmrgpu_
bsrsv_c and tfqmrgpu_bsrsv_z offer library initialization, setup of sparse
matrix support structures and solving in one function for single and double preci-
sion, respectively. More details can be found in Appendix A.4 and example/
tfqmrgpu_C_example.c in the repository [28].

C++ Interface

The tfQMR core algorithm is designed as header-only library written in templated
C++ and CUDA. This offers the possibility to instantiate the tfQMR core with a
user-written action_t-class as demonstrated in Sect. 4. However, C++ applica-
tions can also link against the C-interface of the precompiled library libtfqm-
rgpu.so.

Fortran Interface

The C-API in tfQMRgpu/include/tfqmrgpu.h declares all functions

 to return a scalar integer status variable (tfqmrgpuStatus_t=int32_t from
cstdint). Here, NAME is a placeholder for various function names. Please see
Appendix A.3 for a complete list of available function names. The wrapper func-
tions defined in tfQMRgpu/source/tfqmrgpu_Fortran_wrapper.c aug-
ment the C-API by declaring void functions:

 with an appended underscore to the routine name as this matches the naming con-
vention on most Linux/Unix platforms. All scalar arguments are passed by pointer,
also the status as a trailing argument. This allows Fortran users to call them as
subroutines, a wide-spread pattern used to call MPI libraries from Fortran [32].

The void functions are wrapped again in the Fortran90 module defined in
tfQMRgpu/include/tfqmrgpu_Fortran_module.F90, see exam-
ples/tfqmrgpu_Fortran_example.F90. Also for Fortran, the single func-
tion API is available, c.f. Sects. A.2.1 and A.4 for details.

	 P. F. Baumeister, S. Nassyr 663   Page 18 of 22

Julia and Python Interface

Functions from the shared object libtfqmrgpu.so can be called from Julia
(julialang.org) and Python by adding proper type annotations to the arguments,
see example/tfqmrgpu_Julia_example.jl and example/tfqmrgpu_
python_example.py, respectively.

tfQMRgpu block‑sparse C‑API

In Table 3 we present the names of the full API as offered in include/
tfqmrgpu.h roughly in order as a regular usage could look like. You may refer to
examples to see them in their function. The goal of this fine-granular 13 steps or
more is to avoid redundant operations when integrating tfQMRgpu into your appli-
cation. The API design has been chosen to offer extensibility, i.e. allowing for addi-
tional library functionality besides bsrsv. Although the creation of the library han-
dle is currently very light-weight you may want to reduce the overheads that arise
from performing the finalization and initialization steps in between two solve-
calls. For example in the application KKRnano the shapes of the block-sparse matri-
ces X and B only change when atom positions or the truncation radius are changed
or the block columns are redistributed among the parallel processes. Therefore, the
analysis step createPlan is separated from the solve process as the plan stays

Table 3   Full API for tfqmrgpu_bsrsv 

Name Functionality

tfqmrgpuCreateHandle A library handle is created
tfqmrgpuSetStream Attach a GPU stream to handle
tfqmrgpu_bsrsv_createPlan Plan sparse matrix multiplication
tfqmrgpu_bsrsv_bufferSize Compute device memory requirement
tfqmrgpuCreateWorkspace Allocate device memory
tfqmrgpu_bsrsv_setBuffer Attach memory buffer to plan
tfqmrgpu_bsrsv_setMatrix Upload operators A and B
tfqmrgpu_bsrsv_solve Solve the problem
tfqmrgpu_bsrsv_getInfo Check for convergence and stats
tfqmrgpu_bsrsv_getMatrix Download operator X
tfqmrgpuDestroyWorkspace Free device memory
tfqmrgpu_bsrsv_destroyPlan Free plan structure
tfqmrgpuDestroyHandle Free library resources
tfqmrgpuGetErrorString Convert status into message
tfqmrgpuPrintError Print error message to standard out
tfqmrgpuGetStream Query GPU stream attached
tfqmrgpu_bsrsv_allowedBlockSizes Query allowed block sizes
tfqmrgpu_bsrsv_blockSizeMissing Check for missing block size
tfqmrgpu_bsrsv_getBuffer Query memory buffer attached

tfQMRgpu: a GPU‑accelerated linear solver with block‑sparse… Page 19 of 22  663

unchanged. Similarly, if also the block dimensions stay the same, the bufferSize
function will compute the same memory requirement and we can even avoid to call
DestroyWorkspace (=cudaFree) and CreateWorkspace(=cudaMal
loc) in between two solver calls. In some applications, only A is changed, in other
use cases, only B might change. Therefore, the user can choose independently when
to upload the data arrays of operators A and B using the setMatrix function. Sim-
ilarly, we can avoid to download the operator X using the getMatrix function
when the getInfo function signals that convergence has not been reached. The
lower part of Table 3 lists some helper functions that allow to deal with error codes
produced by tfQMRgpu and inquiry functions. The most important ones of them
being allowedBlockSizes and blockSizeMissing. These two interfaces
enable the user to check at runtime if a given pair of block dimensions (n, m) was
listed in include/allow_block_sizes.h during compile time. It could be
helpful to avoid the wasting of compute time on HPC machines when integrated into
the initialization steps of an application.

Easy integration helper

The full API described in the previous section is meant to be integrated into vari-
ous parts of an application which means a substantial programming effort. How-
ever, before integrating, the users need to assess if tfQMRgpu is beneficial for their
application. For this, a single function API is offered:

The meaning of these arguments is explained in detail in docs/tfQMRgpu_
manual, however, for quick reference we present explanations in Table 4. Simi-
larly, the single precision version tfqmrgpu_bsrsv_c is offered with Amat,
Xmat and Bmat being float-pointers instead of double-pointers.

The integer type int32_t has been chosen as it matches with
INTEGER(kind=4) in Fortran, a reasonable tradeoff between range
( [−231, 231 − 1] ) and data volume ( 4Byte per number). Although all values passed
in these lists are non-negative, Fortran does not support unsigned integer
types natively, hence we only use the range [0, 231 − 1] . Internally, tfQMRgpu
uses uint16_t for the block column indices which limits their number to
216 = 65 536.

The pointers to doubles mark the beginning of complex arrays. tfQM-
Rgpu expects real parts and imaginary parts back to back in memory,

	 P. F. Baumeister, S. Nassyr 663   Page 20 of 22

i.e. {{r0, i0}, {r1, i1},…} . Since the C standard does not offer an equivalent of
std::complex the user should pass the pointer to the real part of the first com-
plex number.

The data layouts are given for block transpositions trans?=’n’ (non-trans-
pose). With trans?=’t’, block dimensions and indices are interchanged. We
refer to the manual for more options such as complex conjugation.

The number of block columns in X and B is derived from the indices in
colIndX.

Hardware and middleware details

The compiler versions used for benchmarking were GCC/9.3.0 and CUDA/11.0
in a RockyLinux/8.7 operating system. The host processor to the NVIDIA
V100 GPUs was an AMD EPYC 7742 with 256 GByte of DDR4 memory (JSC
system "JUSUF"). For the benchmarks on NVIDIA A100 an AMD EPYC 7402 host
CPU (JSC system "JUWELS_Booster") was used.

Open source

tfQMRgpu is publicly available under the MIT license at github.com/real-
space/tfQMRgpu. This publication has been produced using the version tagged
v0.9 [28].

Table 4   Arguments of the single function API tfqmrgpu_bsrsv_z. The character ’?’ stands for A, X
or B in the argument names. The column "rw" marks if the fields are read, written or both. # is short for
"number of"

Type Name rw Functionality

int nRows r # block rows in A, X, B and # block columns in A
int ldA r # columns per block and # rows per block in A
int ldB r # columns per block in B and X
int32_t* rowPtr? r list of row starts in the BSR format, layout [nRows+1]
int nnzb? r # nonzero blocks of A, X, B, respectively
int32_t* colInd? r List of column indices of the blocks, layout [nnzb?]
char trans? r Transposition of blocks of A, X, B, respectively
double* Amat r Matrix entries of A, layout [nnzbA × ldA × ldA × 2]
double* Xmat w Matrix entries of X, layout [nnzbX × ldA × ldB × 2]
double* Bmat r Matrix entries of B, layout [nnzbB × ldA × ldB × 2]
int32_t* iterations rw In: maximum # iterations, out: # iterations needed
float* residual rw In: threshold for convergence, out: residuum reached
int echo r Verbosity level for logging, 0: no output, ..., 9: debug
int (returned) w tfqmrgpu_bsrsv_z returns a status, 0: no errors

tfQMRgpu: a GPU‑accelerated linear solver with block‑sparse… Page 21 of 22  663

Acknowledgements  PFB thanks Jiri Kraus (NVIDIA) for support on the interface design. Also, PFB
thanks Marc Vandelle (EPFL) for a first version of the Python interface.

Funding  Open Access funding enabled and organized by Projekt DEAL. This work has been funded by
the German Federal Ministry of Education and Research through SiVeGCS.

Declarations 

Conflict of interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:864–871. https://​doi.​
org/​10.​1103/​PhysR​ev.​136.​B864

	 2.	 Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects.
Phys Rev 140:1133–1138. https://​doi.​org/​10.​1103/​PhysR​ev.​140.​A1133

	 3.	 Mohr S, Ratcliff LE, Genovese L, Caliste D, Boulanger P, Goedecker S, Deutsch T (2015) Accu-
rate and efficient linear scaling dft calculations with universal applicability. Phys Chem Chem
Phys 17:31360–31370. https://​doi.​org/​10.​1039/​C5CP0​0437C

	 4.	 Nakata A, Baker JS, Mujahed SY, Poulton JTL, Arapan S, Lin J, Raza Z, Yadav S, Truflandier
L, Miyazaki T, Bowler DR (2020) Large scale and linear scaling dft with the conquest code. J
Chem Phys 152(16):164112. https://​doi.​org/​10.​1063/5.​00050​74

	 5.	 VandeVondele J, Borštnik U, Hutter J (2012) Linear scaling self-consistent field calculations
with millions of atoms in the condensed phase. J Chem Theory Comput 8(10):3565–3573.
https://​doi.​org/​10.​1021/​ct200​897x

	 6.	 Korringa J (1947) On the calculation of the energy of a Bloch wave in a metal. Physica
13(6):392–400. https://​doi.​org/​10.​1016/​0031-​8914(47)​90013-X

	 7.	 Kohn W, Rostoker N (1954) Solution of the Schrödinger equation in periodic lattices with an
application to metallic lithium. Phys Rev 94:1111–1120. https://​doi.​org/​10.​1103/​PhysR​ev.​94.​
1111

	 8.	 Thiess A, Zeller R, Bolten M, Dederichs PH, Blügel S (2012) Massively parallel density func-
tional calculations for thousands of atoms: KKRnano. Phys Rev B 85:235103. https://​doi.​org/​10.​
1103/​PhysR​evB.​85.​235103

	 9.	 Zeller R, Dederichs PH, Újfalussy B, Szunyogh L, Weinberger P (1995) Theory and convergence
properties of the screened Korringa-Kohn-Rostoker method. Phys Rev B 52:8807–8812. https://​
doi.​org/​10.​1103/​PhysR​evB.​52.​8807

	10.	 JuKKR Repository. Forschungszentrum Jülich GmbH. https://​iffgit.​fz-​jueli​ch.​de/​kkr/​jukkr
Accessed 09 Sept 2023

	11.	 Bornemann M, Grytsiuk S, Baumeister PF, Santos Dias M, Zeller R, Lounis S, Blügel S (2019)
Complex magnetism of B20-MnGe: from spin-spirals, hedgehogs to monopoles. J Phys Condens
Matter 31(48):485801. https://​doi.​org/​10.​1088/​1361-​648X/​ab38a0

	12.	 Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum A,
Hammarling S, McKenney A, Sorensen D (1999) LAPACK Users’ Guide, 3rd edn. Society for
Industrial and Applied Mathematics, Philadelphia, PA. https://​doi.​org/​10.​1137/1.​97808​98719​604

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1039/C5CP00437C
https://doi.org/10.1063/5.0005074
https://doi.org/10.1021/ct200897x
https://doi.org/10.1016/0031-8914(47)90013-X
https://doi.org/10.1103/PhysRev.94.1111
https://doi.org/10.1103/PhysRev.94.1111
https://doi.org/10.1103/PhysRevB.85.235103
https://doi.org/10.1103/PhysRevB.85.235103
https://doi.org/10.1103/PhysRevB.52.8807
https://doi.org/10.1103/PhysRevB.52.8807
https://iffgit.fz-juelich.de/kkr/jukkr
https://doi.org/10.1088/1361-648X/ab38a0
https://doi.org/10.1137/1.9780898719604

	 P. F. Baumeister, S. Nassyr 663   Page 22 of 22

	13.	 Freund RW (1993) A transpose-free quasi-minimal residual algorithm for non-Hermitian linear
systems. SIAM J Sci Comput 14(2):470–482. https://​doi.​org/​10.​1137/​09140​29

	14.	 Freund RW, Nachtigal NM (1991) QMR: a quasi-minimal residual method for non-Hermitian
linear systems. Numerische Math 60(1):315–339. https://​doi.​org/​10.​1007/​BF013​85726

	15.	 Freund RW, Nachtigal NM (1996) QMRPACK: a package of QMR algorithms. ACM Trans Math
Softw 22(1):46–77. https://​doi.​org/​10.​1145/​225545.​225551

	16.	 Kelley CT (1995) Iterative methods for linear and nonlinear equations. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA. https://​doi.​org/​10.​1137/1.​97816​11970​944

	17.	 Anzt H, Cojean T, Flegar G, Göbel F, Grützmacher T, Nayak P, Ribizel T, Tsai YM, Quintana-
Ortí ES (2022) Ginkgo: a modern linear operator algebra framework for high performance com-
puting. ACM Trans Math Softw. https://​doi.​org/​10.​1145/​34809​35

	18.	 Borstnik U, VandeVondele J, Weber V, Hutter J (2014) Sparse matrix multiplication: the distrib-
uted block-compressed sparse row library. Parallel Comput 40(5–6):47–58

	19.	 OpenAI Blocksparse. GitHub. https://​cdn.​openai.​com/​block​sparse/​block​spars​epaper.​pdf
	20.	 cuSOLVER v12.8 (2025). https://​docs.​nvidia.​com/​cuda/​pdf/​CUSOL​VER_​Libra​ry.​pdf
	21.	 cuSPARSE, the CUDA sparse matrix library v12.8 (2025). https://​docs.​nvidia.​com/​cuda/​cuspa​

rse/
	22.	 Cheik Ahamed A-K, Magoulès F (2012) Iterative methods for sparse linear systems on graphics

processing unit. In: 2012 IEEE 14th International Conference on High Performance Computing
and Communication & 2012 IEEE 9th International Conference on Embedded Software and Sys-
tems, 836–842. https://​doi.​org/​10.​1109/​HPCC.​2012.​118

	23.	 Liegeois K, Rajamanickam S, Berger-Vergiat L (2023) Performance portable batched sparse lin-
ear solvers. IEEE Trans Parallel Distrib Syst 34(5):1524–1535. https://​doi.​org/​10.​1109/​TPDS.​
2023.​32491​10

	24.	 NVIDIA-Corporation: (2017) NVIDIA Tesla V100 GPU Architecture, The World’s Most
Advanced Data Center GPU. Technical report. https://​images.​nvidia.​com/​conte​nt/​volta-​archi​
tectu​re/​pdf/​volta-​archi​tectu​re-​white​paper.​pdf

	25.	 Matsubara T (1955) A new approach to quantum-statistical mechanics. Progr Theor Phys
14(4):351–378. https://​doi.​org/​10.​1143/​PTP.​14.​351

	26.	 Keller H, Pereyra V (1978) Symbolic generation of finite difference formulas. Math Comput
32(144):955–971. https://​doi.​org/​10.​1090/​S0025-​5718-​1978-​04948​48-1

	27.	 Baumeister PF, Hater T, Pleiter D, Boettiger H, Maurer T, Brunheroto JR (2017) Exploiting in-
memory processing capabilities for density functional theory applications. In: Euro-Par 2016:
Parallel Processing Workshops. Lecture Notes in Computer Science, vol 10104, pp 750–762.
Springer, Cham. Chap. 60. https://​doi.​org/​10.​1007/​978-3-​319-​58943-5_​60. https://​juser.​fz-​jueli​
ch.​de/​record/​830547

	28.	 Baumeister PF (2023) tfQMRgpu GitHub respository. https://​github.​com/​real-​space/​tfQMR​gpu
Accessed 09 Sept 2023

	29.	 Baumeister P, Nassyr S (2023) Real-space/tfQMRgpu: stable for reference publication. Zenodo.
https://​doi.​org/​10.​5281/​zenodo.​83334​98

	30.	 Bolten M, Thiess A, Yavneh I, Zeller R (2012) Preconditioning systems arising from the kkr
green function method using block-circulant matrices. Linear Algebra Appl 436(2):436–446.
https://​doi.​org/​10.​1016/j.​laa.​2011.​05.​019

	31.	 Yu R, Sturler E, Johnson DD (2002) A block iterative solver for complex non-hermitian systems
applied to large-scale, electronic-structure calculations. Technical report, USA. https://​dl.​acm.​
org/​doi/​10.​5555/​871118

	32.	 MPI-Forum: MPI (1994) A message-passing interface standard. Technical report, USA. https://​
www.​mpi-​forum.​org/​docs/​mpi-3.​1/​mpi31-​report.​pdf Accessed 09 Sept 2023

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1137/0914029
https://doi.org/10.1007/BF01385726
https://doi.org/10.1145/225545.225551
https://doi.org/10.1137/1.9781611970944
https://doi.org/10.1145/3480935
https://cdn.openai.com/blocksparse/blocksparsepaper.pdf
https://docs.nvidia.com/cuda/pdf/CUSOLVER_Library.pdf
https://docs.nvidia.com/cuda/cusparse/
https://docs.nvidia.com/cuda/cusparse/
https://doi.org/10.1109/HPCC.2012.118
https://doi.org/10.1109/TPDS.2023.3249110
https://doi.org/10.1109/TPDS.2023.3249110
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://doi.org/10.1143/PTP.14.351
https://doi.org/10.1090/S0025-5718-1978-0494848-1
https://doi.org/10.1007/978-3-319-58943-5_60
https://juser.fz-juelich.de/record/830547
https://juser.fz-juelich.de/record/830547
https://github.com/real-space/tfQMRgpu
https://doi.org/10.5281/zenodo.8333498
https://doi.org/10.1016/j.laa.2011.05.019
https://dl.acm.org/doi/10.5555/871118
https://dl.acm.org/doi/10.5555/871118
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

	tfQMRgpu: a GPU-accelerated linear solver with block-sparse complex result matrix
	Abstract
	1 Introduction
	1.1 Related work

	2 Throughput optimization
	3 Application to block-sparse operators
	3.1 Performance
	3.1.1 Multiplication benchmark
	3.1.2 Benchmark solving

	4 Implicit operators
	4.1 Finite-difference derivative
	4.2 Performance
	4.2.1 Finite-difference derivative benchmark
	4.2.2 Benchmark solving
	4.2.3 Direct performance comparison

	5 Summary and outlook
	5.1 Outlook

	Appendix
	Memory usage
	Interfaces
	C Interface
	C++ Interface
	Fortran Interface
	Julia and Python Interface

	tfQMRgpu block-sparse C-API
	Easy integration helper
	Hardware and middleware details
	Open source

	Acknowledgements
	References

