The Journal of Supercomputing (2025) 81:663
https://doi.org/10.1007/s11227-025-07145-6

™

Check for
updates

tfQMRgpu: a GPU-accelerated linear solver
with block-sparse complex result matrix

Paul F. Baumeister'© . Stepan Nassyr'

Accepted: 1 March 2025
©The Author(s) 2025

Abstract

We present t £QMRgpu, a GPU-accelerated iterative linear solver based on the
transpose-free quasi-minimal residual (tfQMR) method. Designed for large-scale
electronic structure calculations, particularly in the context of Korringa—Kohn—Ros-
toker density functional theory, t £QMRgpu efficiently handles block-sparse com-
plex matrices arising from multiple scattering theory. The solver exploits GPU par-
allelism to accelerate convergence while leveraging memory-efficient sparse storage
formats. By unifying the solution of multiple right-hand side (RHS) block vectors,
t £QMRgpu significantly improves throughput, demonstrating up to a 3.5X speedup
on modern GPUs. Additionally, we introduce a flexible implementation framework
that supports both explicit matrix-based and matrix-free operator formulations,
such as high-order finite-difference stencils for real-space grid-based Green func-
tion calculations. Benchmarks on various NVIDIA GPUs demonstrate the solver’s
efficiency, in some cases achieving over 56% of peak floating-point performance for
block-sparse matrix multiplications. t£QMRgpu is open-source, providing inter-
faces for C, C++, Fortran, Julia, and Python, making it a versatile tool for high-
performance computing applications that can benefit from the unification of RHS
problems.

Keywords Quasi minimal residual method - Iterative linear solver - Header-only
library - Block-sparse matrices - Multi-precision library - GPU acceleration

Mathematics Subject Classification 15-04 - 65F10 - 65F50

P< Paul F. Baumeister
p-baumeister @fz-juelich.de

' Jiilich Supercomputing Centre, Forschungszentrum Jiilich, 52425 Jiilich, Germany

Published online: 27 March 2025 &)\ Springer

http://orcid.org/0000-0002-2005-4474
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-025-07145-6&domain=pdf

663 Page 2 of 22 P. F. Baumeister, S. Nassyr

1 Introduction

In the context of electronic structure calculation and, in particular density functional
theory (DFT) [1, 2], linear-scaling algorithms are needed to make geometries with mil-
lions of atoms affordable [3—5], however, most methods rely on the representation of
a sparse or truncated density matrix which limits their applicability to non-metallic
systems. The linear-scaling truncated Green function method has been developed from
the Korringa-Kohn-Rostoker (KKR) theory of multiple scattering [6, 7] and works for
materials with a band gap as well as metallic systems. The DFT package KKRnano
[8] shows promising results with respect to the accessible number of atoms and the
efficient usage of high-performance computing (HPC) installations. Different from
traditional wave function-based DFT methods using eigensolvers, the Green function
method requires the solution of many linear systems. Through the concept of screened
KKR [9] the non-Hermitian scattering path operator can be constructed in a block-
sparse fashion. The block structure stems from KKR’s localized basis, i.€. (£, + 1)
numerical radial basis functions per atom. Often ,,,=3 is used and an additional fac-
tor 2 accounts for the non-collinear treatment of magnetism [10, 11] so 16 X 16 are
32 x 32 are typical block sizes. We refer to the block size as n. For each atom in the
system, n solutions of linear systems x; € CV need to be found such that

A-x;=Db, ie[l,n]cN (D)

for given vectors b; € CV. The dimension N = n, n is the product of the number of
block rows n, € N and the number of rows per block n. Here, A € C¥¥ is a block-
sparse matrix with blocks of size n X n representing an atom’s truncated view of the
global scattering path operator. Due to the block structure of A, it is advantageous to
group the column vectors X; into a dense block vector X € CV*" and equivalently the
right-hand side (RHS) vectors b; into B € CV*". So now, X needs to be found such
that

A-X=B.)

We refer to Eq. (2) as a single atom problem. From the screened KKR theory it fol-
lows that only one block of B is nonzero.

The single atom problem in Eq. (2) can be solved using LAPACK’s zgesv/cgesv
[12] if we can afford to store a dense matrix representation of A and to pay the com-
pute costs of matrix factorization which scale as O(N?). However, the low number of
nonzero blocks in A suggests an iterative solving approach, in particular since the trun-
cation radius R,, is increased in order to converge the results and the filling ratio of the
sparse matrix A decreases as R[‘r3.

As iterative solver we chose a quasi-minimal residual (QMR) method which looks at
the residual vector

r=Ax-b 3)

and seeks to minimize its norm ||r||, by varying x. Here, r,x,b € C" and Ais alin-
ear operator which could be a general matrix A € CV*V, The transpose-free quasi-
minimal residual method (tfQMR) has been investigated by Freund and Nachtigal

@ Springer

tfQMRgpu: a GPU-accelerated linear solver with block-sparse. .. Page3of22 663

in the 1990s [13, 14] as modification of the GCS method. It is a variant of the Kry-
lov subspace methods and should therefore exhibit a similar convergence behav-
iour as other methods out of that algorithm family. The tfQMR method comes with
the striking advantage that is suitable for general, non-hermitian operators and no
adjoint operator needs to be provided which makes its usage less error-prone to pro-
gramming mistakes.

1.1 Related work

The original Fortran77 implementations of the tfQMR method by Freund and
Nachtigal [13, 15] can be found at netlib.org/linalg/gmr/*utfx.f.
This work focuses on complex numbers only, so * stands for either ¢ or z. Many
implementations of tfQMR can be found in the literature as, e.g. the Python
implementation scipy.sparse.linalg.tfqgmr [16], however, most pack-
ages act on single vectors like Eq. (1) and cannot benefit to a comparable extent
from vectorization, graphical processing unit (GPU) acceleration nor from the per-
formance improvements through the arithmetic intensity of matrix-matrix multipli-
cations. Several software packages offer the treatment of sparse matrices on GPUs
[17], some of them specializing for block-sparse matrices [18, 19], while only some
libraries offer linear solvers for sparse problems [20]. For example NIVIDA’s own
cuSPARSE [21] which makes use of the block sparse row (BSR) format and offers
a GPU version of a direct (non-iterative) linear solver applicable for Eq. (2) and also
offers the ingredients for an iterative solver such as the GPU-optimized block matrix
times block vector multiplication. Various projects have been realized, e.g. by Cheik
Ahamed and Magoules [22], however, not with a particular focus on block-sparse
matrices.

Liegeois et al. investigated [23] batched versions of GMRES to combine several
smaller problems that fit into a single GPU’s memory, however, to our knowledge,
none of the established software packages can benefit from combining different
atom problems with a partially shared matrix A as explained in the next sections.

The remainder of this paper is structured as follows:

Section 2 describes how the GPU bandwidth can be exploited better by simulta-
neously solving for several atom problems. Section 3 discusses the performance and
speedups on current GPUs. Section 4 shows a matrix-free instantiation of t £QM-
Rgpu and compares its performance to the block-sparse use case. Finally, Sect. 5
provides a summary and outlook. Technical details are given in the appendix
Section A.

2 Throughput optimization

The iterative linear solver part solving the single atom problem, Eq. (2), has shown to
take up more than 90 % of the total runtime of KKRnano on CPUs indicating a large
potential for GPU-acceleration and optimization. This work shows how tfQMRgpu
optimizes the throughput of such problems on GPUs by combining the problems of

@ Springer

663 Page 4 of 22 P. F. Baumeister, S. Nassyr

several atoms. Combining for two or more atoms results in a block-sparse result array
breaking the generality of the t f£OMRgpu as a linear solver.

When considering the particular problem in Eq. (2) for two spatially adjacent atoms
we can observe that their respective views of the scattering path operator A, and A,
have a large fraction of matrix blocks that are the same, c.f. orange matrix elements
in Fig. 1. Considering that memory bandwidth is the most valuable resource in HPC
we can save memory and compute time by solving the two block column problems
simultaneously. This requires the unification of the two dense block column vectors X,
and X; € CM" into an array X. Then X becomes a block-sparse matrix since many but
not all n, block entries in X|, correspond in their physical position to block entries in X,
c.f. green block column vector elements in Fig. 1. Note that if we increased the solution
array X into a dense matrix, any operator A that is not block-diagonal (and hence trivial)
would lead to solutions that differ from X, and X, the separate solutions of Eq. (2) for
the two atoms. Therefore, it is essential that X is a block-sparse result array and that any
product Y = A - X is restricted to the original sparsity pattern of X. This poses an essen-
tial difference to a general multiplication of two block-sparse operators.

For reasons of clarity we discussed combining the atom problems for two spatially
adjacent atoms so far. We will, henceforth, assume that m,. € N problems are com-
bined. In order to have a large ratio of shared matrix blocks, it is advantageous to unify
the problems of a spatially compact cluster of atoms. This is a constraint towards the
load balancer of KKRnano required to exploit the optimization discussed here.

The core algorithm of tfQMR works for M = m_.m RHS vectors where m € N is
the number of columns per block and m, € Nis the number of atom problems unified,
i.e. the number of block columns in the block-sparse solution array, X. It simultane-
ously minimizes the norm of all M column vectors of the block-sparse matrix of residu-
als R defined as

R=AX-B. 4

The algorithm’s implementation is C++ templated with respect to the class
action_t that offers the action of A on a set of M block-sparse trial vectors X as

for col#0 =

Fig. 1 Block-sparse matrix A (orange) with 8 X 8 blocks and block-sparse matrix X (green) with 2 block
columns. (Left) In the left column (col#0) of X row#7 is all zero, so the matrix view Aj has a 7 X 7 shape
ignoring all blocks of A in row#7 and col#7. (Right) For the right column (col#1) row#0 and col#0 of A
are ignored to produce a different 7 X 7 matrix view A,. In this example from a 1D geometry 17 of 24
blocks of A are shared between the two views, A, and A,. 3D geometries can produce considerably larger
fractions of shared blocks

@ Springer

tfQMRgpu: a GPU-accelerated linear solver with block-sparse. .. Page50f22 663

Y = Amult iply(X). ®))

X, Y, R and B are stored in a block-sparse fashion using the BSR format. The BSR
format is a version of the compressed sparse row (CSR) sparse matrix format in
which each matrix entry is a dense C™ block. In the case of A blocks are square,
C™". The BSR format is also used by cuSPARSE [21].

The number of block rows n,. of all four, X, ¥, R and B, is determined by the unifi-
cation of the m, problems.

Since we need to subtract B from Y to find the residuals R, c.f. Eq. (4), the spar-
sity pattern of X must have a nonzero block entry wherever B has one, but not vice
versa. With other words, B can have less nonzero blocks than Y. In fact, in the par-
ticular screened KKR use case only m, blocks of B are nonzero.

The details of the tfQMR algorithm and the discussion of its convergence behav-
iour are beyond the scope of this paper and we refer to [13, 15] for the mathematical
part. The tfQMR iterations stop when all M RHSs have converged.

3 Application to block-sparse operators

In this section we will present the applications of the tfQMR core algorithm outlined
in Sect. 2 with a linear operator A that is defined as a block-sparse matrix A, the
original use case for which t £QMRgpu was developed.

Assume A is given as block-sparse matrix A with blocks a € C"™" it is favour-
able to define the block sizes of both, X and B, to be € C™ where m € N can be
chosen freely. Typically, we choose m = n, but for the sake of memory alignment,
m > n can be advantageous. Then, the action of A on X defined in Eq. (5) can be
implemented by an optimized matrix-matrix multiplication kernel that contracts two
blocks as

n

Yk = Zaijxjk fori € [1,n], k € [1,m]. (6)
j=1

A result block y is only computed if the corresponding block x is nonzero in the
block-sparsity pattern of X. Note that in general the sparsity pattern of ¥ would have
more nonzero blocks than X. However, we restrict this by demanding that the spar-
sity pattern of ¥ matches that of X exactly and compute only those blocks of Y.

3.1 Performance

tfOMRgpu comes with the executable bench tfgmrgpu, a mini-app for bench-
marking. It supports two functionalities

e benchmark the multiplication of two block-sparse operators
e measure the performance of the full block-sparse solver.

@ Springer

663 Page 6 of 22 P. F. Baumeister, S. Nassyr

The use case of a block-sparse operator A with relatively large blocks could ben-
efit from calling versions of gemm from cuBLAS or the batched gemm versions
for smaller matrices. However, for very small matrix block sizes, kernel overheads
are critical. We therefore investigated hand-written block-times-block multiplica-
tion kernels. The strategy is to make data reuse as much as possible. Exactly one
CUDA-block is started for each nonzero block y € C"™" of the result operator Y.
The number of nonzero blocks in Y, nnzbY, equals to nnzbX since X and Y share
the same sparsity pattern. A pre-calculated index list tells which pairs (a, x) with
blocks a € C"™" of A and blocks x € C"™™ of X contribute to a nonzero block y of
Y. The block multiplication kernel is launched with <<< nnzbY, {m,n/n,.., 1} >>>
and each CUDA-thread zero-initializes n,.. complex numbers as accumulators in its
registers. The number of accumulators per CUDA-thread, 7, is a tuning parameter
and for simplicity we assume n,..=1 here. We refer to the notation of Eq. (6). In each
step j a sub-group of CUDA-threads loads columns of a (length n, stored column-
major) and rows of x (length m, stored row-major) into the shared memory of the
GPU’s streaming multiprocessor (SM)s. In order to save shuffling operations, real
parts and imaginary parts are stored separately in memory allowing coalesced load
operations. Then, each CUDA-thread loads both, a; and Xy from shared memory,
performs the complex multiplication and adds the result to the accumulators. After
each contributing pair of blocks (a, x) has been visited, the content of the accumula-
tors is stored in y.

3.1.1 Multiplication benchmark

As performance benchmark for the block-times-block multiplication, we use spar-
sity patterns with nnzbX= 4490 nonzero blocks in X and nnzbA= 13109 nonzero
blocks in A. This combination of patterns forsees 7,,;;= 50526 block multiplica-

tions from a KKR use case. The sparsity of A is 13109/1063? = 1.16 % and of X is

4490/(1063 - 16) = 26.4 %. The problem stems from a unification of 16 atom prob-
lems. Operator A has in average 13.8 nonzero blocks per row and the solution X has
in average 280.6 nonzero block rows per column. For each single RHS column, in
average 11.25 nonzero blocks per row in A are relevant.

For a reliable performance benchmark, the kernel is executed 20 times in a row
and timings are averaged over five repetitions.

Some performance numbers are listed in Table 1 and the V100 performance is
also shown in Fig. 2. Note that the performance is best for blocks shaped 64 X 64.
For small blocks the performance is lower as there, the limitation by the device
memory bandwidth is even stronger. For larger blocks the arithmetic intensity is
even higher, however, a different implementation of the block-times-block multipli-
cation would be necessary to achieve a higher performance. We would not be able to
accommodate all accumulators in a streaming multiprocessor’s register file without
costly register spills, so that a division into sub-blocks would be required. As sub-
blocking would increase code complexity, we recommend to apply other libraries for
the multiplication task with larger blocks (> 50).

@ Springer

tfQMRgpu: a GPU-accelerated linear solver with block-sparse. .. Page70f22 663

Table 1 Performance dat;l in V100 V100 A100 A100
TFlop/sec for the block-times-

block multiplication kernel on Rows Cols float double float double

two different GPUs. The first

and third column show the 4 X 4 0510 0467 0493 0453

number of rows per block and 8 X 8 1.776 1.446 2.566 1.634

the number of columns per 16 X 16 4482 3.067 4616 3.124

block 32 x 32 6.742 4.097 9975 5.455
64 X 64 8471 4254 10.740 5.691
128 X 128 6200 3.012 8282 3.795
4 X 32 2778 2.143 4414 2768
8 X 32 4664 2988 6.067 3.967
16 X 32 5546 3.498 6571 4.834

T T T T T T T T T T T
@ 4r 18
3
o | J
L
~ 3r -6
(0]
[&]
C - 4
]
S
S 2f 14
k5
o ©o—¢ rectangular]
L 0 float N
g1 — double 2
s | o-o square]

1 L 1 L 1 L 1 L 1 L 1

0 4 8 16 32 64 128 0

Number of rows per block

Fig.2 Performance data for the complex block-times-block multiplication on an NVIDIA V100 GPU.
Mind that the scale for double performance is on the left axis, i.e. the largest performance here is 4254
GFlop/s (56% of peak £p64 performance [24]) for 64x 64 blocks. All rectangular cases have 32 columns
per block

We also benchmark the case of rectangular blocks, with m = 32 columns per
block. This matches the warp size of NVIDIA GPUs and benefits from a good ratio
of fully coalesced load and store operations. In Fig. 2 an increased performance for
the rectangular cases (m > n, m = 32) can be seen for n € {4,8, 16} over square
block cases.

3.1.2 Benchmark solving

To demonstrate the solving capabilities of tfQMRgpu we run the KKR problem
from Sect. 3.1.1 with a block size of 32 x 32. It represents the Matsubara pole

@ Springer

663 Page 8 of 22 P. F. Baumeister, S. Nassyr

Table 2 Runtime data in

seconds for the 32x32-block- GPU I RHS 16 RHSs Speedup

sparse £p64 solver of a KKR V100 0919 s 8.663 s 170

problem with 287 rows per

column on different GPUs A100 0.940's 6.119s 246
GH200 0.637 s 2.864 s 3.56

[25] closest to the real axis, i.e. close to the Fermi energy of a metallic system
that leads to a moderately large number of iterations due to the large condition
number of A. See Fig. 4 for an impression of the spectrum of A and Fig. 3 for the
convergence. The tfQMR algorithm usually does not evaluate the residual norm
explicitly in every iteration as this requires the potentially costly computation of
AX — B. We call this probing. Typically, probing happens only when approach-
ing the convergence threshold. We forced the algorithm to probe in very iteration
to plot the residual norm in Fig. 3. Apparently, probing in every iteration helps
to accelerate the convergence slightly in terms of the number of iterations, how-
ever, every iteration comes with a 33 % performance penalty, so it is not acti-
vated by default. In double precision the problem converges to a residual norm
below 107® in 755 iterations requiring about 8.66 s on an NVIDIA V100 GPU.
This translates into a full solver performance of 2.355 TFlop/s, i.e. about 57% of
the pure multiplication performance (4.1 TFlop/s were achieved on a V100 for
32 x 32 blocks). The drop in performance is due to the linear algebra operations

o

Residual norm

float
— double
+ probe

+

oo vl vl v vvd vl vl vl
—
o

| L | L | L | L | L | L | L
100 200 300 400 500 600 700
Iteration number

Fig.3 Convergence of the tfQMR algorithm for a mildly conditioned problem set from KKR multiple
scattering theory (condition numbers range from 160 to 655). Solving to a residual norm 10~° took 755
iterations and 8.65 s on a V100. When the residual norm was evaluated in every iteration for this plot,
additional effort to compute AX — B required about 33 % more time but convergence was detected nine
iterations earlier. Usually, probing occurs rarely, see red crosses. In a mixed precision approach, one
could run the first 200 iterations in float, however, for this particular problem convergence cannot be
reached with single precision

@ Springer

tfQMRgpu: a GPU-accelerated linear solver with block-sparse. .. Page90f22 663

T . T 7 1 T T % T ' 1

9o n
oV

g3
. e 4
RHS #1 L&

RHS#0 3¢

T
T

5
1 - a1
i
3
0 |- -
-1+

L | | L | L | L |

- 1
-15 -1 -05 0 -15 -1 -05 0

Fig. 4 Eigenvalues of two different views of A from a KKR problem plotted in the complex plane. The
spectra were computed with the dense matrix eigenvalue solver zgeev from LAPACK. The two red
marks in the right subplot indicate the locations of extreme eigenvalues. Although the two spectra have
similar features, the condition numbers for these two cases differ by 25 % due to the eigenvalues with the
smallest magnitude

(axpy, xpay and inner products) which require the full device bandwidth but
contribute only little to the count of floating point operations.

As visible from Table 2, solving 16 unified problems only takes about 9.4X as
long (V100) as solving for a single RHS block column. The latter could also be
performed using other libraries. This results in a speedup for the unified problems
of 1.7x on a V100. More recent GPUs architectures offer even more floating point
performance relative to their GPU memory bandwidth. Here the effect of problem
unification becomes even more pronounced with the latest GH200 GPU being up to
3.56x faster than the non-unified reference, see Table 2. This confirms that t QM-
Rgpu can save valuable resources by simultaneously solving the unified problems
of several RHS block columns.

The savings can be explained in analogy to the performance characteristics of
BLAS routines. As BLAS level 1 operations work on a pair of vectors the arithme-
tic intensity is low and performance is completely limited by the available device
memory bandwidth. BLAS level 2 comprises matrix—vector operations, i.e. some
data reuse on the vector can be exploited. Most HPC machines, however, are tuned
to maximize their BLAS level 3 performance, i.e. dense matrix multiplications. The
arithmetic intensity of dense (square) matrix multiplication grows linear with the
matrix dimensions so at a given size, there is enough compute to keep the floating
point units busy all the time. We can view the unification of RHS block columns in

@ Springer

663 Page 10 of 22 P. F. Baumeister, S. Nassyr

a similar way. Although, the block-multiplication requires some floating point opera-
tions, the block sizes are too small to saturate the floating point units compared to
their bandwidth requirements. When solving for a single RHS block column, the
situation is comparable to BLAS level 2. Unification of problems leads to an opera-
tion A - X, that resembles BLAS level 3 operations more in terms of their data reuse.

4 Implicit operators

The tfQMR core algorithm introduced in the previous sections is templated with
respect to a C++ class action t which as its most important property offers the
class method multiply performing the operation

Y=AX (7

where A needs to be any linear operator that can accept the block-sparse data layout
of X and produce Y in the same layout. In Sect. 3 also A was a block-sparse matrix
operator, i.e. action t = blocksparse action t. In this section we will
showcase the application of the t fOMRgpu header-only library with a matrix-free
linear operator.

4.1 Finite-difference derivative

We try to solve for the Green function GE of the 3D Helmholtz equation

(—%Ar - E)GE(r,)= 8 —r) ®)
with E € C and r,r’ € R? sampled on a uniform Cartesian real-space grid. Due to
the grid sampling, the right-hand side 6> becomes a unit operator. The Laplacian A,
is the sum of second derivatives in all three spatial dimensions which, on the grid,
can be approximated fairly accurately by a 16th-order finite-difference (FD) stencil
[26]. The analytical solution of Eq. (8) is the retarded Green function of the point-
shaped wave source

_ exp(—zr\/ﬁ)
r

Gg(r, 1) with r=|r—r| 9

which reduces to the electrostatic Green function 1/r for E=0 and to the screened
Yukawa interaction exp(—ry/ —2E)/r for negative energies E. For positive energies,
the imaginary unit : in the exponential function leads to an oscillatory numerator
which is relevant for example in acoustics and optics (Helmholtz kernel).

The 3D FD-stencil is implemented in a three-pass procedure, i.e. the second
derivative in each spatial dimension is taken in a serial loop [27].

Note that the implementation of the 3D stencil operator is not part of the t QM-
Rgpu repository [28] but can be found at github.com/real-space/Ang-
stromCube /include/green kinetic.hxx for reference.

@ Springer

tfQMRgpu: a GPU-accelerated linear solver with block-sparse. .. Page 110f22 663

—- 16 GByte
10F _ Time (sec), 1 RHS E
[— Time (sec), 8 RHSs]
| — Space (GB), 1 RH]
— Space (GB), 8 BH]
-+++ cubic ' |
1

- i 3 ". 1 I
10 50
Truncation Radius (h)

1 I
100

Fig.5 Time and space requirements for nine tfQMR iterations in single precision as a function of the
truncation radius R. R is measured in units of the grid spacing /. The block size 4x4x4 produces steps
for small truncation radii. Requirements follow a clear R power law. The curves for 8 RHS blocks are a
factor 8 higher and the steep increase in execution time occurs at a factor 2 smaller truncation radius

4.2 Performance

The FD-operator is implemented with a block size 64. Each block corresponds to a
cube of 4x4x4 adjacent grid points. At construction time, geometry information is
gathered to clarify which cubes are neighbouring to each other. Similar to the KKR
use case, an approximate representation of the true solution GE is found by truncat-
ing the result Green function at a radius R such that » < R in Eq. (9).

4.2.1 Finite-difference derivative benchmark

We execute exactly nine iterations of the tfQMR algorithm where the FD-operator is
called twice per iteration. Each call to the multiply routines performs three FD-
passes for the three dimensions. In each pass, we need to read the array to be derived
and add to the result array (read-write), i.e. the memory needs to be transferred three
times. As we can omit the first read of the array, these are 11 instead of 12 opera-
tions. In total that means 198 times the memory volume of one Green function array
needs to be loaded or stored. Figure 5 shows the timings on a V100 GPU and total
memory requirements as functions of the problem size, here given by the cube of the
truncation sphere radius, R®. The truncation radii are given in units of the grid spac-
ing, h. From the fit it seems that only 14.5 % of the nominal maximum device band-
width (900GByte/sec [24]) is used for the derivatives. Also, when the total memory
requirement exceeds the V100 device limit of 16GByte, the unified memory system
uses the device memory as a cache and a part of the memory transactions will result
in page faults. The computation can still be completed, however, the performance is

@ Springer

663 Page 12 of 22 P. F. Baumeister, S. Nassyr

é I T I T I T T L é

100F ___oo==="TT E

#lterations

—————— Linearfit ——————"—"==———>*———+

10 -- 16 GByte 3

c — Space (GB)]

[-+ Cubic fit |

3 3

i | B L | L | L L ||]

10 30 50 80 100
Truncation Radius (h)

E T T T T I T 3

100F E

— Runtime (sec)

10k = A it 4

3 3

i 1 - 1 . I B]

10 30 50 80 100

Truncation Radius (h)

Fig.6 Space and time requirements for tftQMR solving with an implicit FD-operator in double preci-
sion as a function of the truncation radius R. The memory requirements follow a clear R? power law
while the number of iterations increases linearly with R from 60 to about 500. Combined, the runtime
scales roughly with R*. Around R=80, the V100 device memory limit of 16GByte is reached and the
execution time skyrockets

reduced by orders of magnitude as the bandwidth towards the host memory becomes
a bottleneck. This lets the compute time explode around a truncation radius of 100
grid spacings for a single RHS block and already around 50 grid spacings for 2x2x2
RHS block vectors in single precision, c.f. Fig. 5. Comparing the time needed for a
single RHS problem vs. 8 RHSs, we find a factor of 8.0. This indicates that for the
implicit operator—as the operator itself does not come with large data arrays—the
effect of RHS unification is negligible.

@ Springer

tfQMRgpu: a GPU-accelerated linear solver with block-sparse. .. Page 130f22 663

In comparison we can benchmark 18 executions of the FD-operator’s multi-
ply function alone. Here, we find a V100 bandwidth utilization of 568GByte/sec,
i.e. about 77 % efficiency at a truncation radius R=100 4. This means that the tftQMR
iterations spend a considerable fraction of their execution time in other bandwidth-
limited linear algebra operations. Referring to Fig. 5, the case of a single RHS block
vector and R=100 A requires 3.25 s for 9 iterations, but only 0.61 s are needed for
18 operator calls, so the linear algebra fraction accounts for more than 81 % of the
execution time.

4.2.2 Benchmark solving

We execute the tfQMRgpu solver instantiated with a 64x64 block size and dou-
ble precision complex numbers. The implicit operator is the FD-Laplacian from
Eq. (8) with E=0. Figure 6 shows how the number of iterations needed to converge
to a residual norm of 10~ as a function of the truncation radius, R. The total GPU
memory requirement is 34kByte-(R/h)3. The solving time needed is roughly pro-
portional to R* which is a product of the bandwidth-limited kernels that need O(R?)
time for each iteration and a linear growing number of iterations needed for larger
problems (for E=0).

For energy parameters E other than zero, Fig. 7 shows the behaviour of the num-
ber of iterations needed until convergence. Negative energies or a positive imaginary
part (red line) lead to a sub-linear dependence. In particular for E=—10"'Hartree
(dash dotted green line) the solver operates deep inside the Yukawa regime and the
number of iterations saturates quickly with problem size. Positive energies, however,
exhibit a super-linear behaviour in terms of costs.

4.2.3 Direct performance comparison

tfQMRgpu offers two ways to solve the Helmholtz problem from Eq. (8): We
can create a block-sparse operator with FD-coefficients or we can use the implicit
FD-operator discussed in the previous section which can avoid completely to load
matrix elements of A from device memory.

Here, we used a 16th-order FD-stencil, i.e. there are 8 nonzero coefficients
towards each of the six Cartesian directions +x, +y, +z and one central coefficient.
Due to its lower arithmetic intensity the implicit FD-operator achieves only 437
GFlop/s, i.e. 5.75% of peak on a V100 GPU. Solving with the equivalent 64x64
block-sparse operator performs about 3TFlop/s but only every 17th matrix entry is
nonzero and all matrix elements are real. In a direct performance comparison we
find that the implicit FD-operator performs about 3.6X more iterations per seconds.
Figure 8 shows how the residuals of both approaches shrink over time. The conver-
gence graphs exhibit slightly different features (comparing the solid red to the dotted
blue line) which might be related to differences stemming from summation order
artefacts, in particular as in both situations the energy parameter E=0, i.e. we try
to solve a nearly singular problem. The truncation radius for this direct comparison
was chosen as R=49 grid spacings.

@ Springer

663 Page 14 of 22 P. F. Baumeister, S. Nassyr

Number of lterations
: T : T : T : .

1500

—-1400

300

-200

-1100

Truncation Radius (h)

Fig.7 Number of iterations needed for tfQMR solving Eq. (8) to a residual norm of 10~ as a function of
the truncation radius R. The number of iterations depends on the energy parameter E: It is a linear func-
tion of R for E=0 (black solid line), it saturates for £ < 0 (Yukawa regime) and diverges for E > 0

Residuals, R=49 h
T T T T T T T

— libtfQMRgpu.so, 64x64
— tfQMRgpu::solve<FD>

T EREPR T ERPETRTTT EEPERTTTT REPETETTIT EATErE T A
—_
o

5 10 15 20 25 30 35
Wall Clock Time (seconds)

Fig.8 Convergence of the average residual in the FD-problem with two different approaches: the block-
sparse operator with 64 X 64 blocks as offered by the shared library 1ibt fQMRgpu. so (solid red line)
takes about 3.6X as long to converge to a similar residual as an implicit FD-operator, a stencil deriva-
tive action (solid blue line) that makes use of tfQMRgpu: : solve as a header-only library. The red
and blue dots are located where both approaches have the same iteration count (116 and 176, counts
are not shown) and a similar residual value. The dotted blue line copies the solid blue line but on a 3.6x
-stretched time axis

The tool tfgmrgpu generate FD example shipped with tfQMRgpu
allows to create XML files describing block-sparse operators with FD-coefficients
choosing between 1D, 2D and 3D geometries, different block sizes and truncation

@ Springer

tfQMRgpu: a GPU-accelerated linear solver with block-sparse. .. Page 150f22 663

radii. The size of the XML input files is kept at a moderate level by storing only the
unique stencil blocks of the block-sparse operator A and providing an indirection
list. In memory, however, the block-sparse operator is uncompressed into a general
form. Hence it consumes a considerable part of the memory capacity and bandwidth
requirements. An optimization towards similar stencil operators with constant sten-
cil coefficients would be to incorporate the indirection list into the planning phase of
the multiplication of the two block-sparse operators, A and X.

5 Summary and outlook

We present t fOMRgpu, a GPU-accelerated library designed to accelerate linear-
scaling KKR calculations. It offers iterative solving of linear equations using the
tfQMR algorithm. When unifying the linear problems of multiple RHS block vec-
tors, a block-sparse complex-valued solution vector set is required. The performance
of GPUs is leveraged to accelerate all operations possible. For the standard use case
of block-sparse operators, a shared library 1ibt fOMRgpu.so can be built with
pre-selected combinations of block sizes when installing the software package.
Users may adjust and augment the list of available block sizes according to their
needs. Block-sparse matrices with very small blocks (block dimensions up to 50)
benefit from hand-written block-times-block multiplication CUDA kernels that can
make use of up to 56% of the available floating point performance of NVIDIA V100
and A100 GPUs while fully exploiting their generous bandwidth. The unified linear
problems exhibit a large potential of saving resources on the most recent NVIDIA
GPUs. Our showcase of 16 unified problems executed more than 3.5% faster on a
GH200 GPU compared to 16 single problems. This speedup can be explained by
the increased arithmetic intensity of matrix-matrix-multiplication compared to
matrix—vector-multiplication, although the vectors are in our case vectors of small
dense blocks.

Furthermore, we demonstrated how a custom CUDA C++ implementation of a
linear operator can be fed into the templated algorithm core t fQMRgpu: : solve.
We demonstrated this matrix-free approach with a finite-difference stencil opera-
tor which outperforms the equivalent 64 X 64 block-sparse matrix operator by far.
Interfaces to C, Fortran, Julia and Python are available for the block-sparse
library. Sources, examples, tools and benchmarks are included in the open-source
software repository [28] at github.com/real-space/tfQOMRgpu and the
zenodo archive [29].

5.1 Outlook

tfQMRgpu is implemented in CUDA. A generalization would be port to HIP in
order to address both, NVIDIA and AMD devices.

A major performance improvement in particular when dealing with ill-condi-
tioned problems would be a proper preconditioner. For the application to KKR prob-
lems, a very effective block-circulant preconditioner using fast Fourier transforms

@ Springer

663 Page 16 of 22 P. F. Baumeister, S. Nassyr

has been tried [30], however such a preconditioner comes at the prices of increased
code complexity and inferior parallel scalability. Currently, the algorithm is pre-
pared for preconditioning but a general preconditioner is still missing. Suggestions
are welcome.

Since tfQMRgpu has been tested with single and double precision (fp64),
mixed-precision recipes could accelerate the convergence. In particular the first
iterations of many problems could benefit from being executed in float (£p32).
Furthermore, recent hardware versions of NVIDIA GPUs feature TensorCores
to contract small matrices. As also the GPU memory bandwidth has grown with
newer hardware generations it would be interesting to see if using TensorCores in
the block-sparse operator application could increase the performance even further.

In the case of stencils stored as block-sparse operators, some room for perfor-
mance improvement is given by compression. If the block-sparse stencils are inde-
pendent of the row index, as in our finite-difference showcase, an indirection list
could reduce the memory capacity requirement of A substantially and increase the
performance through higher L2-cache hit rates.

Since none of the performance optimizations for the block-sparse operator or the
matrix-free approach are specific to the tfQMR algorithm, it could be worthwhile
to try other iterative solving algorithms, such as, e.g. BCGROT, BiCGSTAB, or
GMRES, and to compare their convergence behaviours. In particular BCGROT has
demonstrated to deliver faster solutions than tfQMR for electronic structure prob-
lems [31].

Appendix
Memory usage

The tfQMR algorithm makes use of six additional arrays of the same size as X. Fur-
thermore, t fQMRgpu stores an array of random numbers always as floats. Since
the values are random, precision is not required here. The memory requirement of
the RHSs B can range between almost none (B fully determined by the index of the
unit vector) up to B and X having the same memory footprint. In total, the memory
requirement ranges between 7.5X and 9X the memory requirement of X, including
the memory of X itself. As a rule of thumb, about 10X the size of X is safe to assume.
Note that this memory count does not yet include any space needed for A.

tfQMRgpu offers a memory counting function which should be used before the
allocation of a GPU memory buffer. Internally, the buffer is managed avoiding any
call to gpuMalloc, a macro that maps to cudaMalloc.

Interfaces
The block-sparse use case (see Sect. 3) of tfQMRgpu is offered as a shared object

library 1ibtfgmrgpu. so. In order to be useful to applications written in vari-
ous programming languages the following interfaces are offered.

@ Springer

tfQMRgpu: a GPU-accelerated linear solver with block-sparse. .. Page 170f22 663

CInterface

libtfgmrgpu.so is shipped with a C interface. Before building the library,
the file allowed block sizes.h can be modified to contain the desired
block size combinations (n, m) that lead to corresponding C++ template instantia-
tions at compile time. Furthermore, complex numbers based on single and double
precision (float and double) are supported. See Appendix A.3 for an overview
of tfQMRgpu’s application programming interface (API).

To lower the adaption barriers the single function APIs tfgmrgpu
bsrsv_cand tfgmrgpu bsrsv_z offer library initialization, setup of sparse
matrix support structures and solving in one function for single and double preci-
sion, respectively. More details can be found in Appendix A.4 and example/
tfgmrgpu C_example.c in the repository [28].

C++ Interface

The tfQMR core algorithm is designed as header-only library written in templated
C++ and CUDA. This offers the possibility to instantiate the tfQMR core with a
user-written action t-class as demonstrated in Sect. 4. However, C++ applica-
tions can also link against the C-interface of the precompiled library 1ibt fgm-
rgpu. so.

Fortran Interface

The C-API in t fQMRgpu/include/tfgmrgpu. h declares all functions
tfgqmrgpuStatus_t tfqmrgpuNAME(...);

to return a scalar integer status variable (tfgmrgpuStatus_t=int32 t from
cstdint). Here, NAME is a placeholder for various function names. Please see
Appendix A.3 for a complete list of available function names. The wrapper func-
tions defined in t £QMRgpu/source/tfgmrgpu Fortran wrapper.c aug-
ment the C-API by declaring void functions:

void tfqmrgpuNAME_(..., tfgmrgpuStatus_t*);

with an appended underscore to the routine name as this matches the naming con-
vention on most Linux/Unix platforms. All scalar arguments are passed by pointer,
also the status as a trailing argument. This allows Fortran users to call them as
subroutines, a wide-spread pattern used to call MPI libraries from Fortran [32].

The void functions are wrapped again in the Fortran90 module defined in
tfOMRgpu/include/tfgmrgpu Fortran module.F90, see exam-
ples/tfgmrgpu Fortran example.F90. Also for Fortran, the single func-
tion API is available, c.f. Sects. A.2.1 and A.4 for details.

@ Springer

663 Page 18 of 22

P. F. Baumeister, S. Nassyr

Table 3 Full API for t fgmrgpu_bsrsv

Name Functionality
tfagmrgpuCreateHandle A library handle is created
tfgmrgpuSetStream Attach a GPU stream to handle

tfgmrgpu bsrsv createPlan
tfgmrgpu_bsrsv_buffersSize
tfagmrgpuCreateWorkspace
tfgmrgpu_bsrsv_setBuffer
tfgmrgpu bsrsv_setMatrix
tfgmrgpu bsrsv solve

tfgmrgpu bsrsv_getInfo

tfgmrgpu bsrsv_getMatrix
tfgmrgpuDestroyWorkspace
tfamrgpu bsrsv_destroyPlan
tfgmrgpuDestroyHandle
tfamrgpuGetErrorString
tfagmrgpuPrintError
tfgmrgpuGetStream

tfamrgpu bsrsv_allowedBlockSizes
tfgmrgpu bsrsv blockSizeMissing
tfamrgpu bsrsv_getBuffer

Plan sparse matrix multiplication
Compute device memory requirement
Allocate device memory

Attach memory buffer to plan
Upload operators A and B

Solve the problem

Check for convergence and stats
Download operator X

Free device memory

Free plan structure

Free library resources

Convert status into message

Print error message to standard out
Query GPU stream attached
Query allowed block sizes

Check for missing block size

Query memory buffer attached

Julia and Python Interface

Functions from the shared object 1ibtfgmrgpu. so can be called from Julia
(julialang.org) and Python by adding proper type annotations to the arguments,
see example/tfgmrgpu Julia example.jl and example/tfgmrgpu
python example.py, respectively.

tfQMRgpu block-sparse C-API

In Table 3 we present the names of the full API as offered in include/
tfamrgpu.h roughly in order as a regular usage could look like. You may refer to
examples to see them in their function. The goal of this fine-granular 13 steps or
more is to avoid redundant operations when integrating tfQMRgpu into your appli-
cation. The API design has been chosen to offer extensibility, i.e. allowing for addi-
tional library functionality besides bsrsv. Although the creation of the library han-
dle is currently very light-weight you may want to reduce the overheads that arise
from performing the finalization and initialization steps in between two solve-
calls. For example in the application KKRnano the shapes of the block-sparse matri-
ces X and B only change when atom positions or the truncation radius are changed
or the block columns are redistributed among the parallel processes. Therefore, the
analysis step createPlan is separated from the solve process as the plan stays

@ Springer

tfQMRgpu: a GPU-accelerated linear solver with block-sparse. .. Page 190f22 663

unchanged. Similarly, if also the block dimensions stay the same, the bufferSize
function will compute the same memory requirement and we can even avoid to call
DestroyWorkspace (=cudaFree) and CreateWorkspace(=cudaMal
loc) in between two solver calls. In some applications, only A is changed, in other
use cases, only B might change. Therefore, the user can choose independently when
to upload the data arrays of operators A and B using the setMatrix function. Sim-
ilarly, we can avoid to download the operator X using the getMatrix function
when the getInfo function signals that convergence has not been reached. The
lower part of Table 3 lists some helper functions that allow to deal with error codes
produced by tfQMRgpu and inquiry functions. The most important ones of them
being allowedBlockSizes and blockSizeMissing. These two interfaces
enable the user to check at runtime if a given pair of block dimensions (n, m) was
listed in include/allow block sizes.h during compile time. It could be
helpful to avoid the wasting of compute time on HPC machines when integrated into
the initialization steps of an application.

Easy integration helper

The full API described in the previous section is meant to be integrated into vari-
ous parts of an application which means a substantial programming effort. How-
ever, before integrating, the users need to assess if tfQMRgpu is beneficial for their
application. For this, a single function API is offered:

int tfqmrgpu_bsrsv_z(int nRows, int 1dA, int 1dB,

const int32_t xrowPtrA, int nnzbA, const int32_t sxcollndA,

const double xAmat, char transA ,

const int32_t xrowPtrX, int nnzbX, const int32_t xcollndX,
double «Xmat, char transX,

const int32_t xrowPtrB, int nnzbB, const int32_t xcollndB,

const double +«Bmat, char transB,

int32_t xiterations, float *residual, int echo);

The meaning of these arguments is explained in detail in docs/t £QMRgpu_
manual, however, for quick reference we present explanations in Table 4. Simi-
larly, the single precision version tfgmrgpu bsrsv_c is offered with Amat,
Xmat and Bmat being float-pointers instead of double-pointers.

The integer type int32 t has been chosen as it matches with
INTEGER (kind=4) in Fortran, a reasonable tradeoff between range
([-2%',23! — 1]) and data volume (4Byte per number). Although all values passed
in these lists are non-negative, Fortran does not support unsigned integer
types natively, hence we only use the range [0,2%' — 1]. Internally, tfQMRgpu
uses uintl6_t for the block column indices which limits their number to
216 = 65536.

The pointers to doubles mark the beginning of complex arrays. tfQM-
Rgpu expects real parts and imaginary parts back to back in memory,

@ Springer

663 Page 20 of 22 P. F. Baumeister, S. Nassyr

Table 4 Arguments of the single function API t fqmrgpu bsrsv_z. The character *?’ stands for A, X
or B in the argument names. The column "rw" marks if the fields are read, written or both. # is short for
"number of"

Type Name ™w Functionality

int nRows r # block rows in A, X, B and # block columns in A

int 1dAa r # columns per block and # rows per block in A

int 1dB r # columns per block in B and X

int32 t* rowPtr? r list of row starts in the BSR format, layout [nRows+1]
int nnzb? r # nonzero blocks of A, X, B, respectively

int32 tx* colInd? r List of column indices of the blocks, layout [nnzb?]
char trans? r Transposition of blocks of A, X, B, respectively
double* Amat r Matrix entries of A, layout [nnzbA X 1dAX 1dA X 2]
doublex* Xmat w Matrix entries of X, layout [nnzbX X 1dAX 1dB X 2]
double* Bmat r Matrix entries of B, layout [nnzbB X 1dA X 1dB X 2]
int32 t* iterations ™w In: maximum # iterations, out: # iterations needed
float* residual ™w In: threshold for convergence, out: residuum reached
int echo r Verbosity level for logging, 0: no output, ..., 9: debug
int (returned) w tfgmrgpu bsrsv_z returns a status, 0: no errors

ie. {{ry, iy}, {ry,i;},... }. Since the C standard does not offer an equivalent of
std: : complex the user should pass the pointer to the real part of the first com-
plex number.

The data layouts are given for block transpositions trans?='n’ (non-trans-
pose). With trans?='"t’, block dimensions and indices are interchanged. We
refer to the manual for more options such as complex conjugation.

The number of block columns in X and B is derived from the indices in
colIndX.

Hardware and middleware details

The compiler versions used for benchmarking were GCC/9.3.0 and CUDA/11.0
in a RockyLinux/8.7 operating system. The host processor to the NVIDIA
V100 GPUs was an AMD EPYC 7742 with 256 GByte of DDR4 memory (JSC
system "JUSUF"). For the benchmarks on NVIDIA A100 an AMD EPYC 7402 host
CPU (JSC system "JUWELS_Booster") was used.

Open source
t£QOMRgpu is publicly available under the MIT license at github.com/real-

space/tfQMRgpu. This publication has been produced using the version tagged
v0.9 [28].

@ Springer

tfQMRgpu: a GPU-accelerated linear solver with block-sparse. .. Page210f22 663

Acknowledgements PFB thanks Jiri Kraus (NVIDIA) for support on the interface design. Also, PFB
thanks Marc Vandelle (EPFL) for a first version of the Python interface.

Funding Open Access funding enabled and organized by Projekt DEAL. This work has been funded by
the German Federal Ministry of Education and Research through SiVeGCS.

Declarations
Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

1. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:864—871. https://doi.
org/10.1103/PhysRev.136.B864
2. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects.
Phys Rev 140:1133-1138. https://doi.org/10.1103/PhysRev.140.A1133
3. Mohr S, Ratcliff LE, Genovese L, Caliste D, Boulanger P, Goedecker S, Deutsch T (2015) Accu-
rate and efficient linear scaling dft calculations with universal applicability. Phys Chem Chem
Phys 17:31360-31370. https://doi.org/10.1039/C5CP00437C
4. Nakata A, Baker JS, Mujahed SY, Poulton JTL, Arapan S, Lin J, Raza Z, Yadav S, Truflandier
L, Miyazaki T, Bowler DR (2020) Large scale and linear scaling dft with the conquest code. J
Chem Phys 152(16):164112. https://doi.org/10.1063/5.0005074
5. VandeVondele J, BorStnik U, Hutter J (2012) Linear scaling self-consistent field calculations
with millions of atoms in the condensed phase. J Chem Theory Comput 8(10):3565-3573.
https://doi.org/10.1021/ct200897x
6. Korringa J (1947) On the calculation of the energy of a Bloch wave in a metal. Physica
13(6):392-400. https://doi.org/10.1016/0031-8914(47)90013-X
7. Kohn W, Rostoker N (1954) Solution of the Schrodinger equation in periodic lattices with an
application to metallic lithium. Phys Rev 94:1111-1120. https://doi.org/10.1103/PhysRev.94.
1111
8. Thiess A, Zeller R, Bolten M, Dederichs PH, Bliigel S (2012) Massively parallel density func-
tional calculations for thousands of atoms: KKRnano. Phys Rev B 85:235103. https://doi.org/10.
1103/PhysRevB.85.235103
9. Zeller R, Dederichs PH, Ijjfalussy B, Szunyogh L, Weinberger P (1995) Theory and convergence
properties of the screened Korringa-Kohn-Rostoker method. Phys Rev B 52:8807-8812. https://
doi.org/10.1103/PhysRevB.52.8807
10. JuKKR Repository. Forschungszentrum Jillich GmbH. https://iffgit.fz-juelich.de/kkr/jukkr
Accessed 09 Sept 2023
11. Bornemann M, Grytsiuk S, Baumeister PF, Santos Dias M, Zeller R, Lounis S, Bliigel S (2019)
Complex magnetism of B20-MnGe: from spin-spirals, hedgehogs to monopoles. J Phys Condens
Matter 31(48):485801. https://doi.org/10.1088/1361-648X/ab38a0
12. Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum A,
Hammarling S, McKenney A, Sorensen D (1999) LAPACK Users’ Guide, 3rd edn. Society for
Industrial and Applied Mathematics, Philadelphia, PA. https://doi.org/10.1137/1.9780898719604

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1039/C5CP00437C
https://doi.org/10.1063/5.0005074
https://doi.org/10.1021/ct200897x
https://doi.org/10.1016/0031-8914(47)90013-X
https://doi.org/10.1103/PhysRev.94.1111
https://doi.org/10.1103/PhysRev.94.1111
https://doi.org/10.1103/PhysRevB.85.235103
https://doi.org/10.1103/PhysRevB.85.235103
https://doi.org/10.1103/PhysRevB.52.8807
https://doi.org/10.1103/PhysRevB.52.8807
https://iffgit.fz-juelich.de/kkr/jukkr
https://doi.org/10.1088/1361-648X/ab38a0
https://doi.org/10.1137/1.9780898719604

663 Page 22 of 22 P. F. Baumeister, S. Nassyr

13. Freund RW (1993) A transpose-free quasi-minimal residual algorithm for non-Hermitian linear
systems. SIAM J Sci Comput 14(2):470-482. https://doi.org/10.1137/0914029

14. Freund RW, Nachtigal NM (1991) QMR: a quasi-minimal residual method for non-Hermitian
linear systems. Numerische Math 60(1):315-339. https://doi.org/10.1007/BF01385726

15. Freund RW, Nachtigal NM (1996) QMRPACK: a package of QMR algorithms. ACM Trans Math
Softw 22(1):46-77. https://doi.org/10.1145/225545.225551

16. Kelley CT (1995) Iterative methods for linear and nonlinear equations. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA. https://doi.org/10.1137/1.9781611970944

17. Anzt H, Cojean T, Flegar G, Gobel F, Griitzmacher T, Nayak P, Ribizel T, Tsai YM, Quintana-
Orti ES (2022) Ginkgo: a modern linear operator algebra framework for high performance com-
puting. ACM Trans Math Softw. https://doi.org/10.1145/3480935

18. Borstnik U, VandeVondele J, Weber V, Hutter J (2014) Sparse matrix multiplication: the distrib-
uted block-compressed sparse row library. Parallel Comput 40(5-6):47-58

19. OpenAl Blocksparse. GitHub. https://cdn.openai.com/blocksparse/blocksparsepaper.pdf

20. cuSOLVER v12.8 (2025). https://docs.nvidia.com/cuda/pdf/CUSOLVER_Library.pdf

21. cuSPARSE, the CUDA sparse matrix library v12.8 (2025). https://docs.nvidia.com/cuda/cuspa
rse/

22. Cheik Ahamed A-K, Magoules F (2012) Iterative methods for sparse linear systems on graphics
processing unit. In: 2012 IEEE 14th International Conference on High Performance Computing
and Communication & 2012 IEEE 9th International Conference on Embedded Software and Sys-
tems, 836-842. https://doi.org/10.1109/HPCC.2012.118

23. Liegeois K, Rajamanickam S, Berger-Vergiat L (2023) Performance portable batched sparse lin-
ear solvers. IEEE Trans Parallel Distrib Syst 34(5):1524-1535. https://doi.org/10.1109/TPDS.
2023.3249110

24. NVIDIA-Corporation: (2017) NVIDIA Tesla V100 GPU Architecture, The World’s Most
Advanced Data Center GPU. Technical report. https://images.nvidia.com/content/volta-archi
tecture/pdf/volta-architecture-whitepaper.pdf

25. Matsubara T (1955) A new approach to quantum-statistical mechanics. Progr Theor Phys
14(4):351-378. https://doi.org/10.1143/PTP.14.351

26. Keller H, Pereyra V (1978) Symbolic generation of finite difference formulas. Math Comput
32(144):955-971. https://doi.org/10.1090/S0025-5718-1978-0494848-1

27. Baumeister PF, Hater T, Pleiter D, Boettiger H, Maurer T, Brunheroto JR (2017) Exploiting in-
memory processing capabilities for density functional theory applications. In: Euro-Par 2016:
Parallel Processing Workshops. Lecture Notes in Computer Science, vol 10104, pp 750-762.
Springer, Cham. Chap. 60. https://doi.org/10.1007/978-3-319-58943-5_60. https://juser.fz-jueli
ch.de/record/830547

28. Baumeister PF (2023) tfQMRgpu GitHub respository. https://github.com/real-space/tftQMRgpu
Accessed 09 Sept 2023

29. Baumeister P, Nassyr S (2023) Real-space/tftQMRgpu: stable for reference publication. Zenodo.
https://doi.org/10.5281/zenodo.8333498

30. Bolten M, Thiess A, Yavneh I, Zeller R (2012) Preconditioning systems arising from the kkr
green function method using block-circulant matrices. Linear Algebra Appl 436(2):436—446.
https://doi.org/10.1016/j.1aa.2011.05.019

31. YuR, Sturler E, Johnson DD (2002) A block iterative solver for complex non-hermitian systems
applied to large-scale, electronic-structure calculations. Technical report, USA. https://dl.acm.
org/doi/10.5555/871118

32. MPI-Forum: MPI (1994) A message-passing interface standard. Technical report, USA. https://
www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf Accessed 09 Sept 2023

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.1137/0914029
https://doi.org/10.1007/BF01385726
https://doi.org/10.1145/225545.225551
https://doi.org/10.1137/1.9781611970944
https://doi.org/10.1145/3480935
https://cdn.openai.com/blocksparse/blocksparsepaper.pdf
https://docs.nvidia.com/cuda/pdf/CUSOLVER_Library.pdf
https://docs.nvidia.com/cuda/cusparse/
https://docs.nvidia.com/cuda/cusparse/
https://doi.org/10.1109/HPCC.2012.118
https://doi.org/10.1109/TPDS.2023.3249110
https://doi.org/10.1109/TPDS.2023.3249110
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://doi.org/10.1143/PTP.14.351
https://doi.org/10.1090/S0025-5718-1978-0494848-1
https://doi.org/10.1007/978-3-319-58943-5_60
https://juser.fz-juelich.de/record/830547
https://juser.fz-juelich.de/record/830547
https://github.com/real-space/tfQMRgpu
https://doi.org/10.5281/zenodo.8333498
https://doi.org/10.1016/j.laa.2011.05.019
https://dl.acm.org/doi/10.5555/871118
https://dl.acm.org/doi/10.5555/871118
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

	tfQMRgpu: a GPU-accelerated linear solver with block-sparse complex result matrix
	Abstract
	1 Introduction
	1.1 Related work

	2 Throughput optimization
	3 Application to block-sparse operators
	3.1 Performance
	3.1.1 Multiplication benchmark
	3.1.2 Benchmark solving

	4 Implicit operators
	4.1 Finite-difference derivative
	4.2 Performance
	4.2.1 Finite-difference derivative benchmark
	4.2.2 Benchmark solving
	4.2.3 Direct performance comparison

	5 Summary and outlook
	5.1 Outlook

	Appendix
	Memory usage
	Interfaces
	C Interface
	C++ Interface
	Fortran Interface
	Julia and Python Interface

	tfQMRgpu block-sparse C-API
	Easy integration helper
	Hardware and middleware details
	Open source

	Acknowledgements
	References

