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The gravity recovery and climate experiment (GRACE) satellite offers valuable data for
hydrological analysis but its coarse spatial resolution limits its effectiveness for local-scale
studies. While statistical downscaling techniques using global hydrological model outputs
have shown promise in enhancing the resolution of terrestrial water storage (TWS) estimates
from GRACE data, the performance of GRACE TWS downscaling based on regional fully-
coupled model outputs remains unexplored. In this study, we analyzed to appraise the
feasibility of GRACE TWS downscaling under two scenarios. The first scenario included
training a machine learning algorithm with global hydrological (Famine Early Warning
Systems Network (FEWS NET) Land Data Assimilation System (FLDAS)) model outputs.
In the second scenario, ParFlow and CLM (PFC) models were combined in a fully surface–
subsurface coupled modeling, and the outputs were integrated into a Random Forest ma-
chine learning downscaling technique. The downscaled TWS values (0.1˚) were then eval-
uated against the GRACE TWS (0.25˚) and precipitation observations of the rain gauges
over the Rhine basin in Germany. The PFC-based downscaled TWS showed stronger cor-
relation (0.98) than the FLDAS-based downscaled TWS (0.80). Comparison of the down-
scaled TWS results with precipitation data also emphasized the superiority of the second
scenario. The PFC model-based downscaled TWS demonstrated increased correlations with
precipitation data over all the sub-basins of the Rhine, suggesting that training downscaling
algorithms with the fully-coupled physics-based hydrological model outputs yield better
results compared to those of the FLDAS model.

KEY WORDS: GRACE, Terrestrial water storage, Machine learning, ParFlow-CLM, Downscaling,
FLDAS.

INTRODUCTION

Terrestrial water storage (TWS) is essential to
the water cycle. It includes the cumulative amount
of water stored vertically on or below the earth’s
surface, making it a vital factor in understanding and
managing water resources (Youssefi et al., 2022;
Humphrey et al., 2023). Satellite-based assessment
of TWS fluctuations is a surrogate approach that has
benefits compared to orthodox field-based moni-
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toring techniques. The latter possess superior data
quality; nevertheless, they are impeded by the scar-
city of in situ observations, especially in large areas
(Ali et al., 2021a, 2021b; Amazirh et al., 2024; Sol-
tani, 2025). Additionally, the huge but limited
opportunity to share data among nations as well as
data collection and processing costs (Seyoum et al.,
2019) further contribute to the hindrances faced.

The gravity recovery and climate experiment
(GRACE) project was initiated in March 2002
(Rodell and Famiglietti, 2001) and followed by its
sister GRACE-Follow-On (GRACE-FO) in 2018.
GRACE is the first global-scale satellite project of
its kind that paved the way for monitoring water
storage variations on the Earth. The gravity signals
gathered by the GRACE satellites go through multi-
step processing to yield monthly TWS data (Khor-
rami and Gunduz, 2021a, 2021b; Ali et al., 2021a,
2021b; Ali et al., 2024b Khorrami et al., 2023a).
Although the inherent spatial resolution of TWS
estimates is 3

� � 3
�
, they are represented at finer grid

sizes ranging from 1
� � 1

�
to 0:25

� � 0:25
�
(Khorrami

and Gündüz, 2023; Ait Dhmane et al., 2024).
Notwithstanding their successful applications

over large scales, the local-scale applications of the
GRACE TWS are shackled on the grounds of their
coarse spatial resolution (Soltani et al., 2020, 2021;
Fatolazadeh et al., 2022; Rafik et al., 2023). There-
fore, downscaling is a mandatory practice when
dealing with local-scale GRACE-based analysis.
Machine learning (ML) models are frequently being
used for downscaling satellite data, particularly
GRACE estimates. These models depend on sta-
tistical relationships between large- and local-scale
hydro-meteorological variables (Wilby et al., 2004).
The hydrological modeling enables the simulation of
high-resolution parameters, thereby facilitating the
integration of high-resolution modeling outputs.
These outputs can be employed subsequently to
enhance the spatial resolution of response variables,
such as GRACE TWS. Statistical downscaling
techniques are aimed at providing finer details of a
parameter, which best depicts its local-scale varia-
tions. It is, therefore, essential to compare results
obtained from various hydrological models to en-
hance our comprehension of which model offers the
most accurate assessment for TWS variations at a
local scale.

To date, many researchers have done GRACE
satellite data downscaling using different ML sta-
tistical techniques. Notwithstanding the variations in
the performance of the used techniques, they all

have one thing in common, namely the application
of the global and open-access hydrological model-
ing, mainly from Global Land Data Assimilation
System (GLDAS), Famine Early Warning Systems
Network Land Data Assimilation System (FLDAS),
and WaterGAP (Long et al., 2016; Rahaman et al.,
2019; Chen et al., 2019; Ali et al., 2021a; Khorrami
et al., 2021, 2023b; Soltani et al., 2021, 2024; Yin
et al., 2022a, 2022b; Khorrami, 2023; Tariq et al.,
2023; Kim et al., 2024; Gou & Soja, 2024).
Notwithstanding their widespread applications,
these large-scale models use several parameters with
specific parameterizations but introduce uncertainty
due to simplifications and assumptions about land
surface processes (Fisher and Koven, 2020) without
considering the local-scale hydroclimatic dynamics.
Consequently, the simulations conducted by re-
searchers could potentially introduce larger uncer-
tainties, as indicated by Jin et al. (2010), thereby
contributing to the overall uncertainty of the
downscaled results.

The ParFlow hydrological model represents a
grid-based parallel integrated approach for hydro-
logic modeling, enabling the simultaneous simula-
tion of flow above and beneath the Earth in a 3D
framework (Maxwell et al., 2009; Soltani et al.,
2022b). This model can be used for a variety of re-
gional water problems over large and small basins. It
does consider surface processes such as evaporation.
Consequently, to produce more realistic outputs,
ParFlow is often coupled with a land surface model,
particularly the common land model (CLM) (Sulis
et al., 2017). The coupled ParFlow–CLM (PFC)
model operates at fine spatial resolutions, consider-
ing variations in topography, vegetation effects, and
the impacts of the variations in land use and climate
change (Soltani et al., 2022a). The model assesses
water availability, ecosystem health, and hydrologi-
cal processes, supporting water resources manage-
ment strategies and enabling the evaluation of flood
risk and water scarcity. With its comprehensive
capabilities, the PFC serves as a valuable tool for
studying hydrological systems and making informed
decisions in various domains. In contrast to other
hydrological models, the PFC model provides a
more comprehensive and intricate account of the
various components involved in the land surface
energy mass balance (Koch et al., 2016). Conse-
quently, this enhanced level of detail facilitates more
accurate hydrological simulations (e.g., Soltani et al.,
2022a).
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We postulate that employing a fully-coupled
hydrological modeling approach for GRACE TWS
downscaling could yield more accurate outcomes
than using global models (such as FLDAS). The
Random Forest (RF) ML model is very promising
method of downscaling GRACE data, owing to its
capacity to efficiently manage multiple input vari-
ables, achieve high accuracy, and effectively identify
the weights of each variable (Chen et al., 2019; Ra-
haman et al., 2019; Mohtaram et al., 2024, 2025). In
this premise and as a novel model-based downscal-
ing approach, the PFC outputs are integrated into
the RF model to derive high-resolution TWS values
(0.1˚) to better characterize water storage dynamics.
The RF model is trained separately with outputs of
the PFC and FLDAS models to downscale GRACE
TWS. The study hypothesis is tested by the validity
of the results against the in-situ observations.

THE STUDY AREA: GEOGRAPHIC
AND HYDROCLIMATIC SETTINGS

The Rhine Basin in Central Europe covers a
vast area of 163,500km2. It extends across nine

countries, namely Italy, Austria, Liechtenstein,
Switzerland, France, Germany, Luxemburg, Bel-
gium, and the Netherlands. Most of the basin,
approximately two-thirds, lies within Germany
(Fig. 1). The Rhine River, stretching approximately
1,200km in length, is the longest in Western Europe.
Its source can be traced back to the lofty Alpine
mountains in Switzerland, from where it meanders
through numerous major urban centers and indus-
trial areas before finally emptying into the North Sea
in the Netherlands. The Rhine, along with its pri-
mary tributaries, holds significant economic advan-
tages and cultural significance for the estimated 60
million inhabitants of Europe (Ullrich et al., 2021).

The temperate climate of the basin is charac-
terized by an average annual temperature and pre-
cipitation of 8:3C0 and 945mm, respectively. Both
precipitation and temperature can show consider-
able variations according to altitude and local
topography (Uehlinger et al., 2009). Precipitation in
the basin can reach above 2,000mm in the moun-
tainous areas (Ionita, 2017). The surface topography
of the mountainous basin reaches up to 2,500m
above sea level (asl). Thus, snow constitutes a sig-
nificant proportion of total precipitation ( 37%) in
this part of the basin, particularly in winter (Soltani
et al., 2022a).

Data and Methodology

GRACE Observations

The data processing facilities for the GRACE
project, such as the Center for Space Research at the
University of Texas (CSR), the German Research
Center for Geosciences (GFZ), and the Jet Propul-
sion Laboratory (JPL), are responsible for analyzing
gravity signals and providing TWS estimates
(Khorrami and Gunduz, 2021a). The Mascon solu-
tion approach is a technique used to process
GRACE observations. It does not apply to the same
extent of signal processing as spherical harmonics
(SH) solutions. Instead, it utilizes predefined mascon
blocks or grid locations for the estimation of mass
variations. GRACE mascon solutions provide a
more accurate, localized, and noise-free represen-
tation of Earth’s mass variations compared to tra-
ditional SH solutions. This approach proves to be
versatile, as it can be applied to various fields
including hydrology, oceanography, and the cryo-
sphere. Notably, it eliminates the need for any

Fig. 1. Location of the Rhine Basin in Central Europe.
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postprocessing or filtering procedures as well as the
application of empirical scaling factors (Save et al.,
2016). Three different sets of GRACE mascon
products from CSR, JPL, and Goddard Space Flight
Center (GSFC) were utilized in this research. The
initial GRACE data were obtained from https://
grace.jpl.nasa.gov/data/get-data/ for JPL and GSFC
datasets and from https://www2.csr.utexas.edu/
grace/RL06_mascons.html for the CSR dataset.

FLDAS Model

The FLDAS incorporates data obtained from
field observations and remote sensing to create a
comprehensive open-access global model that esti-
mates a range of hydrometeorological parameters
(McNally et al., 2017). The FLDAS simulates
parameters using the variable infiltration capacity
(VIC) and the Noah models, with resolutions of 0.01
and 0.25 degrees, respectively (McNally et al., 2017).
The FLDAS–Noah model was utilized in this study
to extract hydrometeorological parameters, includ-
ing snow water storage (SWE), soil moisture storage
(SMS), precipitation (P), temperature (T), runoff
(R), and evapotranspiration (ET). These parameters
were utilized as training inputs for the ML algorithm
to estimate higher-resolution TWS. The FLDAS
data were obtained from https://disc.gsfc.nasa.gov/
datasets/FLDAS_NOAH01_C_GL_M_001/
summary?keywords=FLDAS.

Reconstruction of GRACE Data Gaps

The GRACE mission does not offer a seamless
dataset of global TWS. There are two kinds of gaps:
individual gaps (mission gaps) and intermittent gaps
(intermission gaps). The latter is the result of delay
between the GRACE-FO and GRACE missions. In
order to address the data gaps in the GRACE and
GRACE-FO estimates, various ML techniques have
been employed successfully to reconstruct the
missing data (Mukherjee and Ramachandran, 2018;
Zhang et al., 2021). Nonetheless, the predominant
focus of these techniques on climatic variables raises
concerns regarding their efficacy, as they may not
accurately capture the fluctuations in GRACE TWS,
which are influenced not only by climatic factors but
also by human activities (Jing et al., 2020).

In this study, 15 (2003–2017) years of analysis
were associated with 24 missing months, which were

reconstructed using the seasonal trend decomposi-
tion using loess (STL) technique (Khorrami et al.,
2023c; Ali et al., 2024a). As a straightforward and
potent filtering technique, the STL technique has
been well-documented for breaking down time ser-
ies datasets due to its simplicity and efficiency
(Cleveland et al., 1990). The STL-based method
presents a straightforward technique for addressing
gaps in global TWS values. By decomposing the
TWS time series into its various components, it is
suggested that reconstructed TWS values may pro-
vide a more accurate representation and character-
ization of actual GRACE-observed TWSA features,
incorporating both natural and anthropogenic ef-
fects (Ali et al, 2024a). The GRACE gaps were
reconstructed using the seasonal and long-term
characteristics of the TWS by applying the revised
STL method. The STL initially breaks down the
time series data into its constituent parts, thus:

TWS ¼ Trend t þ Seasonal t þResidual t ð1Þ
Subsequently, it fills in the missing data by incor-
porating the mean seasonal and residual values, in
addition to the trend component specific to the ab-
sent month, thus:

TWS t ¼ y ðTrend tÞ þ Seasonal t þResidual t ð2Þ
where Trend t þ Seasonal t þResidual t denotes the
trend, seasonal, and residual of TWS, respectively, at
time t (Cleveland et al., 1990).

ParFlow –CLM Coupling

Model Description The PFC is an all-encom-
passing hydrological model that integrates the
advantages of both the ParFlow model and CLM. By
doing so, it can effectively simulate intricate inter-
actions between land surface and subsurface
hydrology. This specialized model is particularly
tailored to precisely simulate movements of water
and energy across vast geographical areas at high
spatial resolutions (Sulis et al., 2017).

The PFC model incorporates two key compo-
nents. The first is the ParFlow model, which solves
the Richards equation governing water flow through
3D variably saturated porous media (Jones and
Woodward, 2001Maxwell et al., 2016). This equation
accounts for various factors like soil properties,
topography, and vegetation impacts to simulate
subsurface water movement. ParFlow employs a fi-
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nite difference approach and parallel computing to
efficiently handle the complex computations in-
volved (Kollet and Maxwell, 2006). On the other
hand, CLM (v. 3.5) (Oleson et al., 2008) focuses on
representing land surface processes. It consists of
modules dedicated to surface energy balance, vege-
tation dynamics, biogeochemistry, and snow accu-
mulation and melt. These modules interact with the
ParFlow subsurface component through flux ex-
changes, enabling processes like water infiltration
from the surface to the subsurface, evapotranspira-
tion from vegetation, and heat transfer between the
land surface and subsurface to be effectively simu-
lated and integrated into the model (Soltani, 2022.

ParFlow contributes detailed subsurface vari-
ables such as groundwater levels, soil moisture pro-
files, and subsurface flow rates. These variables
provide CLM with a more accurate representation
of the below-ground hydrological dynamics, allow-
ing for improved estimation of water availability for
vegetation and evapotranspiration processes. In re-
turn, CLM supplies ParFlow with surface variables,
including precipitation, temperature, incoming
radiation, and vegetation characteristics (Kollet and
Maxwell, 2006). These surface variables influence
ParFlow’s simulations by affecting infiltration rates,
soil moisture recharge, and overall subsurface water
movement. The exchange of these variables between
ParFlow and CLM forms a dynamic feedback loop,
enabling a more comprehensive understanding of
how subsurface and surface processes interact and
shape the overall behavior of the terrestrial ecosys-
tem (Soltani, 2022). The ParFlow model transfers
the updated relative saturation (Sw) and pressure
(ψ) values for the top 10 soil layers to the CLM. In
response, CLM sends the depth-differentiated
source and sink terms for soil moisture, including the
top soil evapotranspiration (qe) and soil moisture
flux (qrain) for the top 10 soil layers back to ParFlow.
This integrated approach ultimately enhances our
ability to study and predict complex interactions
within the coupled hydrological-ecological system.
The model visualization in Figure 2 showcases its
structure and configuration.

Atmospheric Forcing Input Data The land sur-
face consists of static parameters such as topogra-
phy, land use/cover (LULC), soil properties, and the
canopy’s physiological factors (Table 1). The re-
searchers employed the Global Multi-resolution
Terrain Elevation Data (GMTED) 2010, with a
resolution of 0:01

�
, to generate the digital elevation

model (DEM). For land use classification, the

MODIS data (Friedl et al., 2002) were employed
and transformed into plant functional types (PFT).
Soil properties were integrated by acquiring data on
the proportion of clay and soil from the FAO/UN-
ESCO global data repository (Batjes, 1997). The
Soil Grids 0:0025

�
dataset, which has been aggre-

gated to a resolution of 0:01
�
, was utilized to

examine the hydraulic properties of soil, including
saturated hydraulic conductivity and Van-Genuch-
ten parameters. European pedotransfer functions
(EU-PTFs) were employed to derive these hydraulic
properties. A suggested association between land
cover type and Manning’s coefficient was applied by
researchers based on the study by Soltani et al.
(2022a).

To acquire meteorological information, scien-
tists made use of data from the German Weather
Service. These data encompass various parameters
such as wind speed, specific humidity, barometric
pressure, longwave radiations, downward shortwave,
and precipitation, as well as the air temperature
close to the Earth’s surface. This study applied the
PFC model utilizing daily atmospheric forcing data
with resolution of 0:1

� � 0:1
�
from the COSMO-

REA12 databank. The COSMO-REA12 dataset
includes the CORDEX EUR-11 domain and
encompasses data from the period spanning 2003 to
2017. Notably, the COSMO-REA12 dataset is a
reanalysis data with high resolution obtained from
the Hans-Ertel Center for Weather Research,
making it a valuable resource for this research.

Simulation Setup A 15-year simulation was
conducted utilizing the PFC model to assess the
model’s effectiveness in representing hydrologic
states and fluxes across the Rhine Basin. The study
focused on the Rhine Basin, and the model consid-
ered different thicknesses over its model layers to
achieve a total thickness of 50m. The soil layers in
the model increase in thickness with depth. The soil
grids offer information on hydraulic properties,
specifically the saturated hydraulic conductivity and
Van-Genuchten parameters, for up to 2 m of soil
depth. For deeper layers, the hydraulic characteris-
tics were assumed to be the same as those at 2m
depth below the surface. The ParFlow enables the
user to define values for the permeability tensor. For
this study, the permeability was considered to be
heterogeneous and equally distributed across the
three dimensions (x, y, and z). The permeability
values were defined across the entire domain and
were assumed to be isotropic (Soltani et al., 2022a).
To achieve dynamic equilibrium, the hydrological
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parameters of the PFC mode were continuously
simulated through the designated modeling config-
uration. The simulation, commonly referred to as a
spin-up run, was conducted to achieve a stable and
rational distribution of the initial state variables. To
accomplish this, the year 2003 was simulated 10
times, resulting in a spin-up period of 10 years. This
approach aligns with previous studies of Soltani
(2022). The PFC model was ran continuously fol-
lowing the spin-up until the total water storage
change was below 2% in comparison to the pre-
ceding years. The resulting initial conditions of
steady-state were subsequently employed in model
simulations spanning from 2003 to 2017.

Generalized Three-Cornered Hat Method

The Generalized Three-Cornered Hat (GTCH)
algorithm (Tavella and Premoli, 1994) has the
capability to handle data with correlations when
appropriately constrained (Tavella and Premoli,
1994). The assumption of this technique is that
observations consist of a common signal but with
uncorrelated noises (Tavella and Premoli, 1994).
The GTCH algorithm was applied to calculate the
associated uncertainties of GRACE mascon prod-
ucts relative to each other to come up with the least
contaminated GRACE observations over the study
area. The GTCH is formulated as follows.

Table 1. Characteristics of data used for PFC modeling

Dataset Source Resolution Reference

Atmospheric forcing COSMO-REA12 0:1
�

ftp://ftp-cdc.dwd.de/pub/REA/

Plant functional type MODIS 0:005
�

https://lpdaac.usgs.gov/products/mcd12q1v006

Soil texture FAO/UNESCO Digital

Soil Map of the World

0:0025
�

Batjes (1997)

Saturated hydraulic

Conductivity and

Van-Genuchten’s

Parameter

European Soil Data

Centre (ESDAC)

0:01
�

https://esdac.jrc.ec.europa.eu/content/3d-soil-hydraulic-

database-europe-1-km-and-250-m-resolution

DEM GMTED2010 0:01
�

https://earthexplorer.usgs.gov/

Manning’s coefficient Relationship between land cover type

and Manning’s coefficient

0:005
�

Soltani et al. (2022a)

Fig. 2. PFC model. The coupling of hydrologic components is visually emphasized in the diagram, showcasing how the ParFlow model

and CLM work in tandem, effectively exchanging information and data to provide an integrated simulation of the hydrological processes.
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The time series of the GRACE dataset is ex-
pressed as:

GRACEi ¼ GRACEt þ eii ¼ 1; 2; 3; s;N ð3Þ
where N denotes the number of GRACE mascon
products (N=3 for this study), GRACEi is the time
series of the ith GRACE product, GRACEt signifies
the original value of GRACE, and ei is the zero-
mean white noise of the ith GRACE product. The
GRACEt value is missing; therefore, one of the
GRACE products was chosen randomly as the ref-
erence product, against which the time series dif-
ferences of the other GRACE products were
calculated (Koot et al., 2006), thus:

Yi ¼ GRACEi �GRACEr ¼ ei � eri ¼ 1; 2; 3; s;N � 1

ð4Þ
The reference product’s time series (CSR mascon
for this research) is denoted as GRACEr. The
uncertainty linked to each GRACE product is the-
oretically independent of the reference product
selection, as the GTCH method is not sensitive to it
(Koot et al., 2006; Duan et al., 2024). For in-depth
explanation of this approach, see Koot et al. (2006)
and Duan et al. (2024).

Machine Learning Downscaling of GRACE TWS

RF is a ML technique that utilizes ensemble-
based classification and regression trees (CART) for
predictive analysis. It is composed of a set of CARTs
whose strength determines the precision of RF-
based predictions (Habibi et al., 2023). The RF
employs a stochastic approach to construct a
regression tree by utilizing a collection of random
homogeneous subsets of predictors. It subsequently
applies the average of the results obtained from
every decision tree (Rahaman et al., 2019). The RF
model can handle a multitude of input data, is highly
accurate, and can determine the importance of
variables (Chen et al., 2019; Rahaman et al., 2019).
Thus, it has been used pervasively in hydrology and
remote sensing.

The downscaling process is as follows: Initially,
all input parameters are aggregated to the spatial
resolution of the GRACE-CSR mascon, specifically
0:25

� � 0:25
�
. The subsequent analysis investigates

the statistical correlations between TWS and various
hydro-meteorological factors, including P, T, SMS,
ET, R, and SWE, utilizing data from both the

FLDAS and PFC models at the same 0:25
� � 0:25

�

resolution. This is achieved through the construction
of a RF model designed to predict TWS. Following
this, the residuals are determined by subtracting
model-derived TWS from TWS obtained from
GRACE. The developed model is then applied to
the hydrometeorological parameters at a higher
resolution of 0:1

� � 0:1
�
, which results in an esti-

mated TWS at that resolution. A residual correction
is subsequently performed at 0:1

� � 0:1
�
by adding

the calculated and interpolated ( 0:1
� � 0:1

�
) resid-

uals to the estimated TWS, thus producing the
downscaled TWS ( 0:1

� � 0:1
�
) (Fig. 3).

The residual correction methodology is struc-
tured into three sequential steps: (1) re-aggregation
of fine-scale predictors ( 0:1

� � 0:1
�
) to the original

TWS resolution ( 0:25
� � 0:25

�
); (2) determination

of TWS residuals by evaluating the differences be-
tween the newly created coarse-scale predictor da-
tasets and the GRACE TWS data ; and (3)
resampling of the residuals through bilinear inter-
polation, followed by their addition to the fine-res-
olution predicted TWS, which produces the final
downscaled TWS values ( 0:1

� � 0:1
�
). This residual

correction procedure is crucial for ensuring that the
downscaled TWS corresponds accurately to the
GRACE TWS data and mitigates any potential
prediction bias due to omitted parameters.

Validation

To evaluate the precision of the results, three
widely utilized accuracy metrics such as the Nash–
Sutcliffe model efficiency coefficient (NSE), root
mean square error (RMSE), and the correlation
coefficient (CC), were applied. The downscaled
TWS values were validated against high-resolution
water storage anomalies (HWSA) (Zhang et al.,
2024) and the field observations of P. The P data
were obtained from 128 rain gauge stations spread
over the basin. The Deutscher Wetterdienst (DWD)
company in Germany administers these stations.
The rain gauge stations were almost uniformly dis-
tributed over the majority of the basins, though
poorly distributed over the Moselle and Alp Rhine
basins. There is no station accessible for the High
Rhine basin. These poor distribution and data scar-
city issues stem from the fact that these basins fall
beyond Germany’s boundaries and, therefore, are
not administrated by the DWD. The data can be
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accessed on https://opendata.dwd.de/climate_
environment/CDC/observations_germany/climate.

RESULTS

Uncertainty Estimation by GTCH Algorithm

The GTCH algorithm measures unsystematic
errors through the use of at least three separate time
series of a single parameter (Chen et al., 2021). The
GTCH algorithm estimated the uncertainties of the
three GRACE mascon datasets from 2003 to 2017.
Figure 4 depicts the grid-based uncertainties asso-
ciated with the CSR, JPL, and GSFC mascon
products over the Rhine Basin. From basin-wise
perspective, the CSR product typically has the
smallest uncertainties, while the GSFC product
tends to have the largest uncertainties. Overall, it
can be stated that the low estimation errors in the
CSR product are due to its efficient and user-
friendly data processing algorithm through which
more spatial details and higher apparent resolution
estimates are offered (Jing et al., 2019).

The uncertainties of the three GRACE mascon
products are also depicted as boxplots (Fig. 5). The
JPL exhibited uncertainties ranging 1:27– 4:30mm
while the GSFC showed uncertainties ranging 1:64–
4:70mm. In addition, the uncertainties in the CSR
ranged 0:45– 3:50mm. The medians (maxima) of the

JPL, GSFC, and CSR products were 2:86mm
ð3:66mmÞ; 3:22mm ð4:03mmÞ, and 2:0mm ð2:86mmÞ,
respectively. Based on these results, we selected the
GRACE CSR mascon product for further analysis.

Downscaling Performance

The TWS values received from the CSR data
were downscaled based on the two downscaling
scenarios. In the first stage, the FLDAS model out-
puts were integrated into the RF model, and in the
second scenario, the output parameters obtained by
the PFC-model simulation were applied in the RF
model. For a better illustration of the modeling re-
sults, the input variables received from the FLDAS
and PFC models are shown in supplementary Fig-
ure SM1. To appraise the efficacy of the downscaling
approaches, the GRACE and downscaled TWS
values were compared (Fig. 6). The accuracy of the
downscaling results was demonstrated through three
statistical metrics: R, RMSE, and NSE. The findings
suggest that the FLDAS-based approach simulates
the TWS with a coefficient of correlation (CC) of
0:80, NSE value of 0:64, and RMSE of 38:10mm.
The PFC-based approach, on the other hand, shows
a far better performance with a coefficient of
determination of 0:98, NSE value of 0:96, and
RMSE of 7:05mm.

The spatial coherence of the TWS before and
after downscaling was evaluated as another means of
examining the downscaling performance. To this
end, the distribution of the mean annual TWS from
the GRACE-CSR and the downscaled TWS time
series were plotted over the study area (Fig. 7). It
suggests that the PFC-based downscaled TWS val-
ues demonstrate a pattern resembling the spatial
dispersion of the GRACE-CSR TWS over the basin.
On the other hand, the distribution of the FLDAS-
based downscaled TWS is divergent from the
GRACE-CSR TWS values indicating that the pro-
posed PFC model-based downscaling approach
outperforms the FLDAS-based in simulating the
local-scale variations of TWS.

The downscaling precision was further investi-
gated based on the multi-year (2003–2017) trend
analysis results (Table 2). The trends of the
GRACE-CSR TWS were used as reference to check
the precision of the trends estimated based on the
downscaled TWS. Based on the results, the PFC-
based downscaled TWS gave better estimates of
long-term trend values in comparison with the

Fig. 3. Schematic illustration of the downscaling analysis

workflow.
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FLDAS-based TWS time series, suggesting better
performance by the PFC-model approach (Table 2).
The FLDAS-downscaling approach demonstrated
weaker performance in capturing the variations of
TWS, especially over the Lower Rhine, Middle
Rhine, and Main basins, for which there is a con-
siderable discrepancy in the estimated trend values.
While the original TWS in the Lower Rhine, Middle
Rhine, and Main basins showed diminishing trends
of �1:73mm, �2:40mm, and �2:48mm, the FLDAS-
based downscaled trends were much higher, namely

�2:70mm, �2:88mm, and �2:92mm of water loss,
respectively.

Validation Against Precipitation Data

The local-scale hydroclimatology of the basin is
characterized by field-based precipitation data. To
validate the downscaling results, monthly data from
rain gauges were used to evaluate their associations
with downscaled TWS values. A station-wise ap-
proach was applied in the validation process, and the

Fig. 4. Uncertainties in GRACE mascon products (JPL, GSFC, and CSR) over the Rhine Basin (2003–2017).
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average number of stations was calculated for each
basin. Because no station is accessible for the High
Rhine basin, the validation analysis for this basin is
lacking. Figure 8 portrays the temporal associations
between the downscaled TWS and averaged pre-
cipitation gauges for both hydrological models. The
findings indicate that the signals produced by the
fully-coupled hydrological model exhibited slightly
superior performance compared to FLDAS model
in terms of accurately representing water storage

fluctuations at local scales, as evidenced by their
stronger associations with the field-based data. Un-
der the PFC model-based downscaling scenario over
the study basins, the RF prediction produced higher
CC values ranging 0:47– 0:60 (Fig. 8b) whereas the
FLDAS model-based downscaling produced lower
CC ranging 0:37– 0:50 (Fig. 8a). This findings align
with the precision evaluation of the ML algorithms
(Fig. 6).

Validation Against HWSA Dataset

The results were further validated against the
HWSA v1.0 data generated by Zhang et al (2024)
based on the integrated use of ML downscaling
framework and physically constrained sliding win-
dow technique. The data cover the whole globe and
offer TWS values at spatial resolution of 1–10 km,
which is accessible at 国家青藏高原科学数据中心

(http://tpdc.ac.cn/). The temporal associations be
tween the downscaled TWS and the HWSA data
across the sub-basins of the study area are given in
supplementary Figure SM2. The statistical results
(Table 3) revealed that the basin-averaged TWS
values from the PFC-based model had better corre
lations with the HWSA dataset than those from the
FLDAS-based approach. The superiority of the
PFC-based downscaling approach is demonstrated,
in particular, by RMSEs, which showed lower dif
ferences from the benchmark dataset across all the
sub-basins compared to the FLDAS-based down
scaling approach.

Estimation of Water Storage Loss

To draw a clear picture of the water storage
dynamics over the 15 years of the study, volumetric
changes in TWS over each basin (Table 4) were
estimated by factoring in the pixel count and the
corresponding area of each basin. It was found that
the Moselle, Upper Rhine, High Rhine, Alp Rhine,
and Main basins had the most critical status
regarding total water storage loss of 12:69km3 ,
12:67km3 , 11:48km3 , 10:68km3 , and 10:27km3

respectively, from 2003 to 2017. The results also
revealed that the situation over the Neckar basins is
relatively moderate, with total water loss of 7:30km3.
The Lower Rhine and Middle Rhine basins with
storage losses of 6:86km3 and 4:30km3, respectively,

Fig. 5. Boxplots of the uncertainties measured in JPL, CSR,

and GSFC products.

Fig. 6. Comparison of GRACE CSR TWS (x axes) with pre-

dicted TWS (y axes) obtained from (a) FLDAS modeling and

(b) PFC modeling.
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turned out to suffer the least from the water storage
variations compared to the other basins (Table 4).

DISCUSSION

It is challenging to accurately determine
uncertainties linked to GRACE estimates because
no field-based data are available for validation.
Therefore, actual uncertainties of values derived
from mass changes of the Earth through this mission
are still unknown (Chen et al., 2021). Despite the

possibility of validation by comparison with data like
water storage changes from altimeter data or in situ
measurements (e.g., Argus et al., 2020; Chen et al.,
2021), as well as mass loads derived from GNSS data
(Fu et al., 2015), it is important to acknowledge that
each validation technique comes with its own set of
constraints.

The GRACE mascon products were assessed
for uncertainties using the GTCH algorithm. The
results obtained indicated that the CSR mascon
product had the least estimation error compared to
the JPL and GSFC products. These findings align

Fig. 7. Fluctuations of TWS (2003–2017) based on (a) GRACE-CSR, (b) FLDAS-based downscaling, and (c) PFC-based downscaling.
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perfectly with the researches of Sakumura et al.,
(2014), Ferreira et al., (2016), Chen et al. (2021), and
Ferreira et al. (2023), who reported the smallest
uncertainties for CSR products over the globe. The
findings also indicate large uncertainties for JPL and
GSFC compared to CSR, from which the GSFC
turned out to be associated with the highest esti-
mation errors. Ferreira et al. (2023) also reported
large uncertainties for the JPL and GSFC mascon
products on global and basin scales. The distribu-
tions of uncertainties in CSR, JPL, and GSFC
products (Fig. 4) are relatively similar, with the
lowest estimation errors over the north and the
highest errors in the south of the basin.

To validate downscaled TWS over the basin,
precipitation observations from rain gauges were
applied as reference datasets. The comparisons were
implemented on a temporal scale and based on a
point-wise approach by using only pixel values ex-
tracted at the location of each rain gauge. Overall,
the findings suggested better associations between
precipitation and TWS over all the basins of the
study area when integrating the PFC outputs into
the RF model. The limited number of rain gauges
shackled this analysis over some of the basins, which
may have affected the results obtained. We suggest
that using a denser rain gauge network would be
beneficial in validating the TWS values against pre-
cipitation. It seems that even much better results are
accessible in case of having a better comparison
approach, such as grid-to-grid evaluation (Wolkeba
and Mekonnen, 2024), which also enables spatial
comparisons to draw more realistic analogies be-
tween the variations of TWS and precipitation. In
this study, the point-wise nature of the precipitation
data was ruled out when performing such a grid-wise
comparison.

The analysis of the current study may also be
affected by uncertainties induced by various sources
of error. The original GRACE data are associated
with inherent processing errors. The authors tried to
get around this problem by applying GRACE mas-
con data, which seems to outperform the SH data
(Aryal and Zhu, 2020). The authors further tried to
select the best GRACE mascon data in terms of the
associated uncertainties to reduce the possible im-
pacts of errors on the analysis results by using the
GTCH algorithm. Another error source is the gap-
filling technique used to reconstruct the GRACE
missing months. However, given its ease of appli-
cation and good performance (Ali et al., 2024a),
pervasive applications in hydrology, the GRACE
missing values were reconstructed by applying the
STL method. Uncertainties linked to hydrological
models employed in generating high-resolution
predictors for downscaling techniques might also
affect the results. Using the ensemble mean of sev-
eral hydrological model outputs is recommended to
circumvent the uncertainty issue (Cao et al., 2015).
Nevertheless, as a result of the limited availability of
global hydrological models operating at a spatial
resolution of ð0:1� � 0:1

� Þ, the FLDAS was exclu-
sively utilized in the analysis. Although the FLDAS
model is a valuable global model, its performance is
shackled by some technical issues. The precision of
FLDAS outputs is significantly influenced by the
quality of the input meteorological data, including
parameters such as P and T. In areas where obser-
vational networks are limited, dependence on
satellite or reanalysis data may lead to uncertainties.
For instance, the FLDAS-global model utilizes
CHIRPS precipitation data for latitudes between 50˚
S and 50˚N, while employing GDAS or MERRA-2
precipitation inputs for regions outside these lati-

Table 2. Basis-wise trend of TWS (2003–2017)

Basin TWS (mm/year)

GRACE-CSR FLDAS-based downscaling PFC-based downscaling

Lower Rhine �1:73� 0:65 �2:70� 1:79 �1:79� 0:75

Moselle �3:12� 1:90 �3:22� 2:80 �3:00� 1:99

Middle Rhine �2:40� 1:43 �2:88� 3:70 �2:47� 1:67

Main �2:48� 1:70 �2:92� 2:24 �2:49� 1:75

Upper Rhine �3:68� 2:26 �3:53� 2:89 �3:61� 2:30

Neckar �3:52� 2:50 �3:39� 2:83 �3:50� 2:54

High Rhine �4:37� 2:95 �3:97� 3:50 �4:35� 3:00

Alp Rhine �4:53� 3:03 �3:99� 3:91 �4:48� 3:21
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Fig. 8. Time series of the FLDAS-based downscaled TWS, PFC-based downscaled

TWS, and rain gauge (P) (2003–2016).
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tudes, potentially impacting the reliability of simu-
lations in areas with insufficient data.

Furthermore, anthropogenic activities are ex-
cluded from the FLDAS simulation framework. This
exclusion can create significant differences between
simulated hydrological conditions and those ob-
served in reality, especially in regions where human
actions markedly modify water cycles. A study
pointed out that contemporary land surface model-
ing systems, including FLDAS, do not integrate the
effects of anthropogenic factors, potentially skewing
the estimates of soil moisture, evapotranspiration,
and streamflow (McNally et al, 2021). Model
parameterization and calibration are other issues
that may affect the accuracy of the simulations. The
effectiveness of FLDAS is contingent upon the
parameterization strategies integrated within its land
surface models. When parameters are inaccurately
defined or overly generalized, they can introduce

biases, particularly when the models are applied on a
global scale that includes various climatic and eco-
logical regions. As an illustration, there are ongoing
efforts to upgrade to the Noah-MP land surface
model, which entails recalibrating parameters asso-
ciated with snow, glaciers, and groundwater to
achieve greater precision (McNally et al, 2021). The
authors believe it is crucial for related prospective
studies to consider these limitations and influential
factors such as data quality and representativeness.
The primary emphasis of this research was on the
datasets employed in statistical downscaling. In fu-
ture investigations, more advanced methods like
deep learning algorithms, in conjunction with an
enhanced precipitation observation network, could
be utilized to address the biases introduced by data
and methodologies. Furthermore, the authors hold
the notion that having an exhaustive analysis of the
downscaling of the GRACE estimates under these

Table 3. Validation results of FLDAS-based TWS, PFC-based TWS, and HWSA (2003–2017)

HWSA

CC NSE RMSE (mm)

Alp Rhine FLDAS 0:94 0:87 0:09

PFC 0:94 0:88 0:03

Lower Rhine FLDAS 0:94 0:84 1:29

PFC 0:95 0:92 0:52

Moselle FLDAS 0:94 0:91 2:57

PFC 0:94 0:91 2:08

Middle Rhine FLDAS 0:95 0:91 1:87

PFC 0:95 0:91 0:61

Main FLDAS 0:92 0:87 1:94

PFC 0:93 0:88 1:30

Upper Rhine FLDAS 0:94 0:90 1:15

PFC 0:94 0:90 0:87

Neckar FLDAS 0:93 0:87 3:27

PFC 0:93 0:87 2:92

High Rhine FLDAS 0:93 0:87 0:48

PFC 0:94 0:87 0:47

Table 4. Zonal statistics of volumetric TWS (2003–2017)

Watershed Loss rate ( mm=year) 0:1
�
Pixel Sum Loss rate ( km3=year) Total Loss ( km3)

Lower Rhine �1:79 254 �0:45 �6:86

Moselle �3:00 282 �0:85 �12:69

Middle Rhine �2:47 116 �0:29 �4:30

Main �2:49 275 �0:68 �10:27

Upper Rhine �3:61 234 �0:84 �12:67

Neckar �3:50 139 �0:49 �7:30

High Rhine �4:35 176 �0:77 �11:48

Alp Rhine �4:48 159 �0:71 �10:68
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two scenarios and incorporating different modeling
outputs will cast more light on the feasibility of the
model-based approach to get better results for local-
scale water assessments.

CONCLUSIONS

The relatively coarse spatiotemporal resolution
of GRACE observations significantly hinders their
applicability in localized scenarios, particularly in
the realm of hydrological assessments. Water re-
source managers and decision-makers prioritize the
need to understand fluctuations in water storage at
local scales. As a result, downscaling GRACE data
is vital until upcoming missions can offer high-res-
olution estimates. The integration of additional data
with enhanced spatial detail from diverse sources is
essential for effective spatial downscaling initiatives,
thereby improving the precision of estimates for the
target variable. The data generated by hydrological
models are ideally suited for incorporation into
downscaling models. However, current research
primarily utilizes outputs from global, publicly
accessible hydrological models. This study, however,
examined the viability of a surrogate scenario by
leveraging auxiliary data obtained from fully-cou-
pled physical hydrological modeling. Accordingly,
high-resolution predictors in the PFC and FLDAS
hydrological modeling were employed to downscale
GRACE observations in the Rhine basin. By vali-
dating the results against the GRACE TWS and
field-based precipitation observations, significant
insights were gained regarding the hydrological
model that most effectively represents local hydro-
logical behavior and the methodology used. Due to
its effective performance and broad range of appli-
cations, the RF ML algorithm was employed to
downscale GRACE CSR data from a spatial reso-
lution of ð0:25� � 0:25

� Þ to ð0:1� � 0:1
� Þ, leveraging

estimates from the FLDAS and PFC models.
To summarize, the study results revealed that

downscaling GRACE TWS through the simulation
outputs derived from the PFC model provides the
most accurate representation of local hydrology,
particularly in smaller basins. The downscaling
method based on the PFC model, as proposed in this
research, demonstrates both effectiveness and reli-
ability within the Rhine basin, adhering to the nec-
essary primary assumptions. This approach shows
considerable potential for application in other river

basins worldwide. Moreover, given the performance
of deep learning algorithms, integrating the outputs
from the PFC model into these algorithms may lead
to even more favorable results. The results indicated
that this approach can be successfully employed to
improve the accuracy and reliability of the down-
scaled results in the test basin. Researchers world-
wide may implement this methodology in their own
fields of study. The proposed downscaling approach
was developed using data derived from the PFC
model, which can be implemented by scholars to
replicate their specific parameters in their respective
research areas.
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