001044971 001__ 1044971
001044971 005__ 20250930132709.0
001044971 0247_ $$2doi$$a10.1007/s00299-025-03577-9
001044971 0247_ $$2ISSN$$a0721-7714
001044971 0247_ $$2ISSN$$a1432-203X
001044971 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03461
001044971 0247_ $$2pmid$$a40775479
001044971 0247_ $$2WOS$$aWOS:001545791200001
001044971 037__ $$aFZJ-2025-03461
001044971 041__ $$aEnglish
001044971 082__ $$a580
001044971 1001_ $$0P:(DE-HGF)0$$aShahbaz, Umar$$b0
001044971 245__ $$aReduced stomatal density improves water-use efficiency in grapevine under climate scenarios of decreased water availability
001044971 260__ $$aHeidelberg [u.a.]$$bSpringer$$c2025
001044971 3367_ $$2DRIVER$$aarticle
001044971 3367_ $$2DataCite$$aOutput Types/Journal article
001044971 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1758893997_5212
001044971 3367_ $$2BibTeX$$aARTICLE
001044971 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001044971 3367_ $$00$$2EndNote$$aJournal Article
001044971 520__ $$aIn Arabidopsis stomatal initiation relies on the transcription factor SPEECHLESS, which is positively regulated by AtEPFL9, a peptide of the epidermal patterning factor family. In grapevine, two EPFL9 paralogs exist but despite a structural similarity, their specific function remains unclear. In this study, we investigated their distinct functional roles and the extent to which reduced stomatal density (SD) may be beneficial for grapevine in terms of water use. We combined expression analysis of the two paralogs in untreated and ABA-treated leaves with the functional characterization of the two genes using grapevine epfl9-1 and epfl9-2 mutants. A physiological analysis of epfl9-2 mutants under different environmental conditions was also performed. We showed that VviEPFL9-1 is exclusively expressed in leaf primordia, whereas VviEPFL9-2 plays a predominant role in fine-tuning SD during the leaf expansion. An epfl9-2 mutant line with 84% lower SD than wild type, exhibited a significant improvement in intrinsic water-use efficiency under both well-watered and water-stressed conditions, with little trade-off in photosynthesis. When the reduction in SD was close to 60%, photosynthetic rate and stomatal conductance were comparable to WT. Our results provide compelling evidence that VviEPFL9-2 knockout determines a significant reduction in stomatal density without a major impact on photosynthesis which may help optimize the adverse impacts of climate change on viticulture.
001044971 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001044971 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001044971 7001_ $$0P:(DE-HGF)0$$aVideau, Pierre$$b1
001044971 7001_ $$0P:(DE-HGF)0$$aCoulonnier, Emma$$b2
001044971 7001_ $$0P:(DE-HGF)0$$aPapon, Carla$$b3
001044971 7001_ $$0P:(DE-HGF)0$$aNavarro-Payá, David$$b4
001044971 7001_ $$0P:(DE-HGF)0$$aValenzuela, Alvaro Vidal$$b5
001044971 7001_ $$0P:(DE-HGF)0$$aMatus, José Tomás$$b6
001044971 7001_ $$0P:(DE-HGF)0$$aMalnoy, Mickael$$b7
001044971 7001_ $$0P:(DE-HGF)0$$aZekri, Olivier$$b8
001044971 7001_ $$0P:(DE-Juel1)143649$$aFiorani, Fabio$$b9$$ufzj
001044971 7001_ $$0P:(DE-HGF)0$$aFaralli, Michele$$b10
001044971 7001_ $$00000-0001-5915-5582$$aDalla Costa, Lorenza$$b11$$eCorresponding author
001044971 773__ $$0PERI:(DE-600)1462082-0$$a10.1007/s00299-025-03577-9$$gVol. 44, no. 9, p. 195$$n9$$p195$$tPlant cell reports$$v44$$x0721-7714$$y2025
001044971 8564_ $$uhttps://juser.fz-juelich.de/record/1044971/files/s00299-025-03577-9.pdf$$yOpenAccess
001044971 909CO $$ooai:juser.fz-juelich.de:1044971$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001044971 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143649$$aForschungszentrum Jülich$$b9$$kFZJ
001044971 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001044971 9141_ $$y2025
001044971 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001044971 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
001044971 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-07
001044971 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-07
001044971 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-07
001044971 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001044971 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT CELL REP : 2022$$d2025-01-07
001044971 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPLANT CELL REP : 2022$$d2025-01-07
001044971 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-07
001044971 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2025-01-07$$wger
001044971 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001044971 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
001044971 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-07
001044971 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2025-01-07
001044971 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001044971 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001044971 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001044971 920__ $$lyes
001044971 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
001044971 980__ $$ajournal
001044971 980__ $$aVDB
001044971 980__ $$aUNRESTRICTED
001044971 980__ $$aI:(DE-Juel1)IBG-2-20101118
001044971 9801_ $$aFullTexts