001     1044971
005     20250930132709.0
024 7 _ |a 10.1007/s00299-025-03577-9
|2 doi
024 7 _ |a 0721-7714
|2 ISSN
024 7 _ |a 1432-203X
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-03461
|2 datacite_doi
024 7 _ |a 40775479
|2 pmid
024 7 _ |a WOS:001545791200001
|2 WOS
037 _ _ |a FZJ-2025-03461
041 _ _ |a English
082 _ _ |a 580
100 1 _ |a Shahbaz, Umar
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Reduced stomatal density improves water-use efficiency in grapevine under climate scenarios of decreased water availability
260 _ _ |a Heidelberg [u.a.]
|c 2025
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1758893997_5212
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In Arabidopsis stomatal initiation relies on the transcription factor SPEECHLESS, which is positively regulated by AtEPFL9, a peptide of the epidermal patterning factor family. In grapevine, two EPFL9 paralogs exist but despite a structural similarity, their specific function remains unclear. In this study, we investigated their distinct functional roles and the extent to which reduced stomatal density (SD) may be beneficial for grapevine in terms of water use. We combined expression analysis of the two paralogs in untreated and ABA-treated leaves with the functional characterization of the two genes using grapevine epfl9-1 and epfl9-2 mutants. A physiological analysis of epfl9-2 mutants under different environmental conditions was also performed. We showed that VviEPFL9-1 is exclusively expressed in leaf primordia, whereas VviEPFL9-2 plays a predominant role in fine-tuning SD during the leaf expansion. An epfl9-2 mutant line with 84% lower SD than wild type, exhibited a significant improvement in intrinsic water-use efficiency under both well-watered and water-stressed conditions, with little trade-off in photosynthesis. When the reduction in SD was close to 60%, photosynthetic rate and stomatal conductance were comparable to WT. Our results provide compelling evidence that VviEPFL9-2 knockout determines a significant reduction in stomatal density without a major impact on photosynthesis which may help optimize the adverse impacts of climate change on viticulture.
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Videau, Pierre
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Coulonnier, Emma
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Papon, Carla
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Navarro-Payá, David
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Valenzuela, Alvaro Vidal
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Matus, José Tomás
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Malnoy, Mickael
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Zekri, Olivier
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Fiorani, Fabio
|0 P:(DE-Juel1)143649
|b 9
|u fzj
700 1 _ |a Faralli, Michele
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Dalla Costa, Lorenza
|0 0000-0001-5915-5582
|b 11
|e Corresponding author
773 _ _ |a 10.1007/s00299-025-03577-9
|g Vol. 44, no. 9, p. 195
|0 PERI:(DE-600)1462082-0
|n 9
|p 195
|t Plant cell reports
|v 44
|y 2025
|x 0721-7714
856 4 _ |u https://juser.fz-juelich.de/record/1044971/files/s00299-025-03577-9.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1044971
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)143649
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-07
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLANT CELL REP : 2022
|d 2025-01-07
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PLANT CELL REP : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-07
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2025-01-07
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21