001044974 001__ 1044974
001044974 005__ 20251027132719.0
001044974 0247_ $$2doi$$a10.1002/aenm.202500861
001044974 0247_ $$2ISSN$$a1614-6832
001044974 0247_ $$2ISSN$$a1614-6840
001044974 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03464
001044974 0247_ $$2WOS$$aWOS:001523567800001
001044974 037__ $$aFZJ-2025-03464
001044974 082__ $$a050
001044974 1001_ $$0P:(DE-HGF)0$$aMaus, Oliver$$b0
001044974 245__ $$aConnecting Local Structure, Strain and Ionic Transport in the Fast Sodium Ion Conductor $Na_{11+x}Sn_{2+x}P_{1− x}S_{12}$
001044974 260__ $$aWeinheim$$bWiley-VCH$$c2025
001044974 3367_ $$2DRIVER$$aarticle
001044974 3367_ $$2DataCite$$aOutput Types/Journal article
001044974 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1761203987_20917
001044974 3367_ $$2BibTeX$$aARTICLE
001044974 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001044974 3367_ $$00$$2EndNote$$aJournal Article
001044974 520__ $$aOn the road to highly performing solid electrolytes for solid state batteries, aliovalent substitution is a powerful strategy to improve the ionic conductivity. While the substitution allows optimization of the charge carrier concentration, effects on the local structure are often overlooked. Here, by pair distribution function analyses is shown that partial substitution of $PS_4^{4−}$ by $SnS_4^{4−}$ polyanion in the fast sodium ionic conductor $Na_{11+x}Sn_{2+x}P_{1−x}S_{12}$ results in discrepancies between the local and average structure. The significantly larger $SnS_4^{4−}$ polyanions lead to inhomogeneities in the local environments of sodium ions and induce micro strain in the material. The combination of nuclear magnetic resonance spectroscopy and quasi-elastic neutron scattering reveals a decrease in the activation energy of fast local ionic jumps. The substitution widens the bottleneck size of some diffusion pathways, and a correlation between the increased strain and improved local ionic transport is observed. Local frustrations caused by the induced inhomogeneities may flatten the energy landscape and lead to the detected decrease in the activation barrier. Understanding these effects of cationic substitution on the local structure, induced crystallographic strain and ionic transport can open up new possibilities to design fast conducting solid electrolytes.
001044974 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001044974 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001044974 7001_ $$0P:(DE-HGF)0$$aSamanta, Bibek$$b1
001044974 7001_ $$0P:(DE-HGF)0$$aSchreiner, Florian$$b2
001044974 7001_ $$0P:(DE-HGF)0$$aStrotmann, Kyra$$b3
001044974 7001_ $$0P:(DE-Juel1)199741$$aLange, Martin Alexander$$b4
001044974 7001_ $$0P:(DE-Juel1)192207$$aKraft, Marvin$$b5
001044974 7001_ $$0P:(DE-HGF)0$$aHartmann, Matthias$$b6
001044974 7001_ $$0P:(DE-HGF)0$$aJalarvo, Niina$$b7
001044974 7001_ $$0P:(DE-HGF)0$$aHansen, Michael Ryan$$b8
001044974 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang$$b9$$eCorresponding author
001044974 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.202500861$$gp. 2500861$$n35$$p2500861$$tAdvanced energy materials$$v15$$x1614-6832$$y2025
001044974 8564_ $$uhttps://juser.fz-juelich.de/record/1044974/files/CONNEC%7E1.PDF$$yOpenAccess
001044974 8564_ $$uhttps://juser.fz-juelich.de/record/1044974/files/revised_manuscript.pdf$$yOpenAccess
001044974 909CO $$ooai:juser.fz-juelich.de:1044974$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001044974 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)199741$$aForschungszentrum Jülich$$b4$$kFZJ
001044974 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192207$$aForschungszentrum Jülich$$b5$$kFZJ
001044974 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b9$$kFZJ
001044974 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001044974 9141_ $$y2025
001044974 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
001044974 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-12
001044974 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-12
001044974 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001044974 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-12
001044974 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-12
001044974 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-12$$wger
001044974 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-12
001044974 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV ENERGY MATER : 2022$$d2024-12-12
001044974 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
001044974 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001044974 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-12
001044974 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2022$$d2024-12-12
001044974 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
001044974 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
001044974 9201_ $$0I:(DE-Juel1)IMD-4-20141217$$kIMD-4$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001044974 980__ $$ajournal
001044974 980__ $$aVDB
001044974 980__ $$aUNRESTRICTED
001044974 980__ $$aI:(DE-Juel1)IMD-4-20141217
001044974 9801_ $$aFullTexts