001     1044974
005     20251027132719.0
024 7 _ |a 10.1002/aenm.202500861
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-03464
|2 datacite_doi
024 7 _ |a WOS:001523567800001
|2 WOS
037 _ _ |a FZJ-2025-03464
082 _ _ |a 050
100 1 _ |a Maus, Oliver
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Connecting Local Structure, Strain and Ionic Transport in the Fast Sodium Ion Conductor $Na_{11+x}Sn_{2+x}P_{1− x}S_{12}$
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1761203987_20917
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a On the road to highly performing solid electrolytes for solid state batteries, aliovalent substitution is a powerful strategy to improve the ionic conductivity. While the substitution allows optimization of the charge carrier concentration, effects on the local structure are often overlooked. Here, by pair distribution function analyses is shown that partial substitution of $PS_4^{4−}$ by $SnS_4^{4−}$ polyanion in the fast sodium ionic conductor $Na_{11+x}Sn_{2+x}P_{1−x}S_{12}$ results in discrepancies between the local and average structure. The significantly larger $SnS_4^{4−}$ polyanions lead to inhomogeneities in the local environments of sodium ions and induce micro strain in the material. The combination of nuclear magnetic resonance spectroscopy and quasi-elastic neutron scattering reveals a decrease in the activation energy of fast local ionic jumps. The substitution widens the bottleneck size of some diffusion pathways, and a correlation between the increased strain and improved local ionic transport is observed. Local frustrations caused by the induced inhomogeneities may flatten the energy landscape and lead to the detected decrease in the activation barrier. Understanding these effects of cationic substitution on the local structure, induced crystallographic strain and ionic transport can open up new possibilities to design fast conducting solid electrolytes.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Samanta, Bibek
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schreiner, Florian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Strotmann, Kyra
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lange, Martin Alexander
|0 P:(DE-Juel1)199741
|b 4
700 1 _ |a Kraft, Marvin
|0 P:(DE-Juel1)192207
|b 5
700 1 _ |a Hartmann, Matthias
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Jalarvo, Niina
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Hansen, Michael Ryan
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Zeier, Wolfgang
|0 P:(DE-Juel1)184735
|b 9
|e Corresponding author
773 _ _ |a 10.1002/aenm.202500861
|g p. 2500861
|0 PERI:(DE-600)2594556-7
|n 35
|p 2500861
|t Advanced energy materials
|v 15
|y 2025
|x 1614-6832
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1044974/files/CONNEC%7E1.PDF
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1044974/files/revised_manuscript.pdf
909 C O |o oai:juser.fz-juelich.de:1044974
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)199741
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)192207
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)184735
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-12
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-12
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-12
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ADV ENERGY MATER : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
920 1 _ |0 I:(DE-Juel1)IMD-4-20141217
|k IMD-4
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-4-20141217
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21