001044979 001__ 1044979
001044979 005__ 20251104202044.0
001044979 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03469
001044979 037__ $$aFZJ-2025-03469
001044979 041__ $$aEnglish
001044979 1001_ $$0P:(DE-Juel1)191568$$aVyas, Kunal$$b0$$eCorresponding author$$ufzj
001044979 1112_ $$aNIC Symposium 2025$$cJülich$$d2025-03-06 - 2025-03-07$$wGermany
001044979 245__ $$aStudying the scaling behavior of quantum annealing to find the ground-state of the 1D Hubbard model
001044979 260__ $$c2025
001044979 3367_ $$033$$2EndNote$$aConference Paper
001044979 3367_ $$2BibTeX$$aINPROCEEDINGS
001044979 3367_ $$2DRIVER$$aconferenceObject
001044979 3367_ $$2ORCID$$aCONFERENCE_POSTER
001044979 3367_ $$2DataCite$$aOutput Types/Conference Poster
001044979 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1762255893_16033$$xAfter Call
001044979 520__ $$aThe Fermi-Hubbard model has occupied the minds of condensed matter physicists for most part of the last century. With a simplistic form of the Hamiltonian, the model can potentially provide explanation to interesting phenomena in correlated electrons. The interest of our current work is the model in one dimension. The one-dimensional Fermi-Hubbard model has been extensively studied and there exist analytical results for determining its ground-state energy in the thermodynamic limit. We want to find the ground-state from the perspective of quantum computing. In particular, we employ the protocol of quantum annealing and perform high performance simulations of the same using the Juelich Quantum Computer Simulator (JUQCS) for systems with upto 40 qubits. We learn that the time required to find the ground-state would scale sublinearly with system size for the half-filling cases considered.
001044979 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001044979 536__ $$0G:(GEPRIS)397300368$$aDFG project G:(GEPRIS)397300368 - Dekohärenz und Relaxation in Quantenspinclustern (397300368)$$c397300368$$x1
001044979 7001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b1$$ufzj
001044979 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b2$$ufzj
001044979 8564_ $$uhttps://juser.fz-juelich.de/record/1044979/files/nic_poster_vyas.pdf$$yOpenAccess
001044979 909CO $$ooai:juser.fz-juelich.de:1044979$$popenaire$$popen_access$$pVDB$$pdriver
001044979 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191568$$aForschungszentrum Jülich$$b0$$kFZJ
001044979 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b1$$kFZJ
001044979 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b2$$kFZJ
001044979 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001044979 9141_ $$y2025
001044979 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001044979 920__ $$lyes
001044979 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001044979 980__ $$aposter
001044979 980__ $$aVDB
001044979 980__ $$aUNRESTRICTED
001044979 980__ $$aI:(DE-Juel1)JSC-20090406
001044979 9801_ $$aFullTexts