001044980 001__ 1044980 001044980 005__ 20251104202045.0 001044980 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03470 001044980 037__ $$aFZJ-2025-03470 001044980 041__ $$aEnglish 001044980 1001_ $$0P:(DE-Juel1)191568$$aVyas, Kunal$$b0$$eCorresponding author$$ufzj 001044980 1112_ $$aJoint Laboratory for Extreme-Scale Computing 2025$$cLemont, Illinois$$d2025-05-13 - 2025-05-25$$gJLESC 2025$$wUSA 001044980 245__ $$aApplication of Jülich Universal Quantum Computer Simulator 001044980 260__ $$c2025 001044980 3367_ $$033$$2EndNote$$aConference Paper 001044980 3367_ $$2DataCite$$aOther 001044980 3367_ $$2BibTeX$$aINPROCEEDINGS 001044980 3367_ $$2DRIVER$$aconferenceObject 001044980 3367_ $$2ORCID$$aLECTURE_SPEECH 001044980 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1762267197_24037$$xAfter Call 001044980 520__ $$aThe Fermi-Hubbard model has occupied the minds of condensed matter physicists for most part of the last century. With a simplistic form of the Hamiltonian, the model can potentially provide explanation to interesting phenomena in correlated electrons. The interest of our current work is the model in one dimension. The one-dimensional Fermi-Hubbard model has been extensively studied and there exist analytical results for determining its ground-state energy in the thermodynamic limit. We want to find the ground-state from the perspective of quantum computing. In particular, we employ the protocol of quantum annealing and perform high performance simulations of the same using the Juelich Quantum Computer Simulator (JUQCS) for systems with upto 40 qubits. We learn that the time required to find the ground-state would scale sublinearly with system size for the half-filling cases considered. 001044980 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 001044980 536__ $$0G:(GEPRIS)397300368$$aDFG project G:(GEPRIS)397300368 - Dekohärenz und Relaxation in Quantenspinclustern (397300368)$$c397300368$$x1 001044980 7001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b1$$ufzj 001044980 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b2$$ufzj 001044980 8564_ $$uhttps://juser.fz-juelich.de/record/1044980/files/JLESC_Vyas.pdf$$yOpenAccess 001044980 909CO $$ooai:juser.fz-juelich.de:1044980$$popenaire$$popen_access$$pVDB$$pdriver 001044980 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191568$$aForschungszentrum Jülich$$b0$$kFZJ 001044980 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b1$$kFZJ 001044980 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b2$$kFZJ 001044980 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 001044980 9141_ $$y2025 001044980 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001044980 920__ $$lyes 001044980 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 001044980 980__ $$aconf 001044980 980__ $$aVDB 001044980 980__ $$aUNRESTRICTED 001044980 980__ $$aI:(DE-Juel1)JSC-20090406 001044980 9801_ $$aFullTexts