

APPLICATION OF JÜLICH UNIVERSAL QUANTUM COMPUTER SIMULATOR

FINDING GROUND-STATE OF THE HUBBARD MODEL USING QUANTUM ANNEALING

13/05/2025 I KUNAL VYAS

Quantum computing

... promises to solve some of our toughest problems

Quantum computing

Quantum states

• Fundamental unit \rightarrow qubit \rightarrow $|0\rangle$ or $|1\rangle$?

A general state of a single qubit can be written as,

$$|q_1\rangle = a_0|0\rangle + a_1|1\rangle$$

A general state of n qubits can be written as,

$$|q_n\rangle = a_{0...0}|0...0\rangle + a_{0...1}|0...1\rangle + ... + a_{1...1}|1...1\rangle$$

= $a_0|0\rangle + a_1|1\rangle + ... + a_{2^{n}-1}|2^n - 1\rangle$

Quantum computing

Quantum gates

An example of a universal set of quantum gates is,

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{4}} \end{pmatrix}, CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

- Transformation of states in quantum computing is unitary.
- Unitary transformations can be decomposed into sequences of single and two qubit gates.

Quantum algorithms

Some examples:

- 1. Shor's algorithm for factorization
- 2. Grover's search algorithm
- 3. Variational quantum algorithms
- 4. Quantum annealing

These quantum algorithms can be implemented on a gate-based quantum computer using a specific sequence of the universal gates, also called a **quantum circuit**.

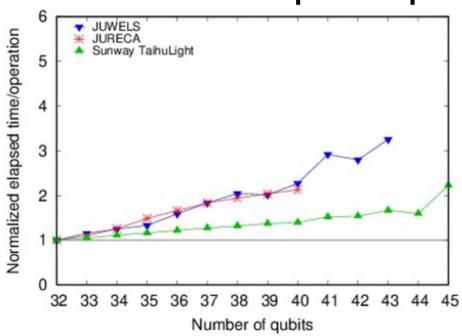
Important to develop software to investigate the performance of quantum algorithms.

JUQCS

Jülich Universal Quantum Computer Simulator

- High-performance software for simulating a gate-based quantum computer.
- Uses **storage of only** 2^n **complex scalars** to faithfully simulate an n-qubit quantum computer: n qubits $\rightarrow 2^n \times 16$ bytes of memory.

Simulates up to 42-qubits using 512 nodes of JUWELS-Booster. Will simulate up to 47-qubits using 4096 nodes of JUPITER.



H. De Raedt et al., Computer Physics Communications 237 (2019) 47-61

Application

Finding ground-state of the Hubbard model

• In 1-dimension, the model Hamiltonian takes the form:

$$H_{H} = -\frac{t}{2} \sum_{\substack{i=1\\i \neq L}}^{2L-1} (X_{i}X_{i+1} + Y_{i}Y_{i+1}) + \frac{u}{4} \sum_{i=1}^{L} (I - Z_{i})(I - Z_{i+L})$$

where X_i , Y_i , Z_i are Pauli matrices acting on qubit i.

The problem is to solve the eigenvalue equation,

$$H_H | \phi \rangle = E | \phi \rangle$$

to find the lowest eigenvalue E_0 and the corresponding eigenstate $|\phi_0\rangle$.

- Exact diagonalization: $O(2^{6L})$
- ...
- Bethe ansatz: $O(L^p)$

Quantum annealing

- We can implement quantum annealing on a gate-based quantum computer to find the ground-state.
- The annealing Hamiltonian that we choose:

$$H(s) = -\frac{t}{2} \sum_{\substack{i=1\\i \neq L}}^{2L-1} (X_i X_{i+1} + Y_i Y_{i+1}) + \frac{su}{4} \sum_{i=1}^{L} (I - Z_i)(I - Z_{i+L})$$

 The state is obtained by solving the time-dependent Schrödinger equation

$$i\frac{d}{dt}|q_{2L}(t)\rangle = H(t)|q_{2L}(t)\rangle$$

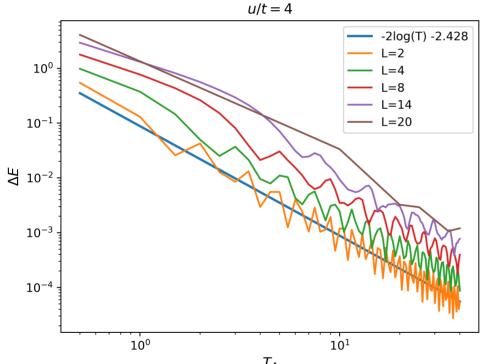
the solution of which can be calculated by

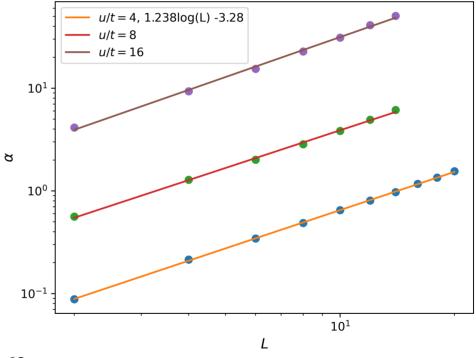
$$|q_{2L}(T_A)\rangle = U(T_A)|q_{2L}(0)\rangle$$

where T_A is the annealing time and $U(T_A)$ is constructed using the second order Suzuki-Trotter product-formula algorithm.

Results

- After constructing circuits for $U(T_A)$ for a range of L and T_A , we simulate them using JUQCS.
- Energy of the state $|q_{2L}(T_A)\rangle$: $\langle q_{2L}(T_A)|H_H|q_{2L}(T_A)\rangle$.
- Energy residue: $\langle q_{2L}(T_A) | H_H | q_{2L}(T_A) \rangle E_0$.





$$\Delta E = \frac{\alpha(L)}{T_A^2} \longrightarrow T_A \propto \frac{L^{0.62}}{\Delta E} \leftarrow \alpha(L) \propto L^{1.238}$$

Summary

- The arena of high performance simulations can thus go a long way in informing us about the utility of quantum algorithms even before the emergence of real hardware to test them.
- The time required to find a reasonable estimate of the ground-state of the 1-dimensional Hubbard model for quantum annealing scales sublinearly with system size.
- The time complexity of $O(L^{0.62})$ suggests a quantum speed-up over classical methods to find the ground-state.

Thank you very much!

