001044981 001__ 1044981
001044981 005__ 20251104202045.0
001044981 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03471
001044981 037__ $$aFZJ-2025-03471
001044981 041__ $$aEnglish
001044981 1001_ $$0P:(DE-Juel1)191568$$aVyas, Kunal$$b0$$eCorresponding author$$ufzj
001044981 1112_ $$aAdiabatic Quantum Computing 2025$$cUniversity of British Columbia, Vancouver$$d2025-06-09 - 2025-06-13$$gAQC 2025$$wCanada
001044981 245__ $$aQuantum speed-up using quantum annealing to solve the 1D Fermi-Hubbard model
001044981 260__ $$c2025
001044981 3367_ $$033$$2EndNote$$aConference Paper
001044981 3367_ $$2DataCite$$aOther
001044981 3367_ $$2BibTeX$$aINPROCEEDINGS
001044981 3367_ $$2DRIVER$$aconferenceObject
001044981 3367_ $$2ORCID$$aLECTURE_SPEECH
001044981 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1762260097_12766$$xAfter Call
001044981 520__ $$aThe Fermi-Hubbard model has occupied the minds of condensed matter physicists for most part of the last century. With a simplistic form of the Hamiltonian, the model can potentially provide explanation to interesting phenomena in correlated electrons. The interest of our current work is the model in one dimension. The one-dimensional Fermi-Hubbard model has been extensively studied and there exist analytical results for determining its ground-state energy in the thermodynamic limit. We want to find the ground-state from the perspective of quantum computing. In particular, we employ the protocol of quantum annealing and perform high-performance simulations of the same using the Jülich Quantum Computer Simulator (JUQCS) for systems with up to 40 qubits. We learn that the time required to find the ground-state would scale sublinearly with system size for the half-filling cases considered.
001044981 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001044981 536__ $$0G:(GEPRIS)397300368$$aDFG project G:(GEPRIS)397300368 - Dekohärenz und Relaxation in Quantenspinclustern (397300368)$$c397300368$$x1
001044981 7001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b1$$ufzj
001044981 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b2$$ufzj
001044981 8564_ $$uhttps://juser.fz-juelich.de/record/1044981/files/AQC_2025_vyas.pdf$$yOpenAccess
001044981 909CO $$ooai:juser.fz-juelich.de:1044981$$popenaire$$popen_access$$pVDB$$pdriver
001044981 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191568$$aForschungszentrum Jülich$$b0$$kFZJ
001044981 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b1$$kFZJ
001044981 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b2$$kFZJ
001044981 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001044981 9141_ $$y2025
001044981 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001044981 920__ $$lyes
001044981 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001044981 980__ $$aconf
001044981 980__ $$aVDB
001044981 980__ $$aUNRESTRICTED
001044981 980__ $$aI:(DE-Juel1)JSC-20090406
001044981 9801_ $$aFullTexts