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Accurately determining the size of the atomic nucleus with realistic nuclear forces is a long-outstanding
issue of nuclear physics. The no-core shell model (NCSM), one of the powerful ab initio methods for nuclear
structure, can achieve accurate energies of light nuclei. The extraction of converged radii is more difficult. In
this work, we present a novel method to effectively extract the radius of light nuclei by restoring the long-range
behavior of densities from NCSM calculations. The correct large distance asymptotics of two-body relative
densities are deduced based on the NCSM densities in limited basis size. The resulting radii using the corrected
densities show a nice convergence. The root-mean-square matter and charge radii of 4,6,8He and 6,7,8Li can
be accurately obtained based on Jacobi-NCSM calculations with the high-precision chiral two-nucleon and
three-nucleon forces combined with this new method. Our method can be straightforwardly extended to other
ab initio calculations, potentially providing a better description of nuclear sizes with realistic nuclear forces.

DOI: 10.1103/j4ky-tn1j

I. INTRODUCTION

The radius is one of the most important properties of
the atomic nucleus. At present, with the increase in high-
performance computing resources, advanced nuclear ab initio
approaches, including the no-core shell model (NCSM),
quantum Monte Carlo, in-medium similarity-renormalization-
group (IMSRG), coupled-cluster theory, and nuclear lattice
simulations [1–14], high-precision nuclear forces have been
widely used to study both nuclear structure and reactions.
With the help of unitary transformations like Vlow-k [15], the
unitary correlation operator method (UCOM) [16], or the sim-
ilarity renormalization group (SRG) [17,18], the interactions
are systematically softened and most ab initio calculations
can achieve converged energies using a limited basis size.
The results based on the softened chiral two-nucleon (NN)
and three-nucleon (3N) forces are generally consistent with
experiments [14]. However, the predicted radii do not provide
accurate descriptions for precision measurements of nuclear
charge radii, which remains a challenge for nuclear structure
theories [13,14,19–25]; see, however, Ref. [12].
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The nuclear many-body wave functions and the corre-
sponding densities obtained from ab initio NCSM or IMSRG
using the SRG-evolved realistic nuclear interaction have two
significant limitations. First, while applying the softened inter-
actions facilitates the convergence of energy calculations, the
unitary transformation alters the wave function in the small
distance (high momentum) regime. While such changes in
wave function are unobservable, it indicates that the opera-
tors have to be consistently evolved to extract the pertinent
observables, which can be achieved by performing the SRG
evolution of the operators or directly getting the unitary
transformation matrix [26,27]. Its effects on the nuclear size,
a long-range observable, have been checked to be small
[19,27,28] but it notably influences the short-range or high-
momentum nuclear density distribution [29].

Second, due to the limited model space size and the har-
monic oscillator (HO) basis functions, the long-range part
of the density falls as e−βr2

rather than the expected e−κr ,
where β is related to the oscillator frequency and κ is
given by the binding momentum. For obtaining binding en-
ergies, convergence beyond the range of the interaction is
not required and, generally, convergence of the tail of the
wave function is not achieved in this region even when
modern high-performance computing resources are used.
As a result, the long-range observables, including root-
mean-square (rms) radius and E2 transitions and moments,
show a strong dependence on the cutoff of the HO ba-
sis size and its frequency (see investigations of light nuclei
using NCSM or no-core configuration interaction calcula-
tions [30–37]), deviating from the usual monotonic conver-
gence pattern observed in binding energy calculations with
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increasing basis. Therefore, the “crossover prescription”
[32,38], extrapolation procedures [37,39–41], and artificial
neural networks (ANNs) [42,43] have been applied to extract
the radii in NCSM calculations. It should be noted that this
issue also persists even when employing bases with proper
asymptotic behavior, such as the Coulomb-Sturmian basis
[38] or natural orbitals [44–46].

Very recently, ab initio calculations using the higher-
order chiral semilocal momentum-space (SMS) regularized
NN forces (N4LO+) in combination with the 3N forces (3NFs)
at N2LO (SMS N4LO+ + N2LO) were proved to be able to
describe the binding energies of light nuclei very well [13,14].
But the results indicate that radii of nuclei in the upper p shell
might be underpredicted in these calculations. It is still an
open question whether the deviation from experiment can be
resolved through the inclusion of higher-order 3NFs or taking
NN electromagnetic current operators into account [47], or
whether an improved convergence at least partly can resolve
this problem. In this context, an application of an ANN for
the extrapolation of the rms matter radius of light nuclei [43]
based on the same interactions is of high interest since it
promises high accuracy results for this quantity. In this work,
focusing on the above-mentioned two issues with the nuclear
radii computed within the NCSM framework, we propose an
alternative method to extract the nuclear radii based on the
densities from the calculations using NCSM based on relative
Jacobi coordinates (J-NCSM) [48–52] with SMS N4LO+ +
N2LO interaction [14]. This paper is organized as follows: in
Sec. II, we briefly introduce the formalism. Then, in Sec. III,
the results for the radii of light nuclei are presented and dis-
cussed. Details on an SRG flow parameter dependence and the
definition of improved densities are given in the Appendixes
A and B. We summarize and put our work in perspective in
Sec. IV.

II. THEORETICAL FRAMEWORK

We start with a nuclear many-body Hamiltonian containing
the kinetic term and chiral NN and 3N forces:

H0 = T + V 2N + V 3N . (1)

The strong repulsive core of realistic nuclear interaction
makes this Hamiltonian hard to solve directly in nuclear
many-body methods. In practical calculations, this interaction
is softened via the unitary transformation; for example, the
most commonly used SRG transformation [17,18]

Hs = UsH0U
†
s = Trel + V 2N

s + V 3N
s , (2)

where the SRG evolved forces Vs and unitary transformation
operators are governed by the flow equations

dVs

ds
= [ηs, Hs] (3)

and

dUs

ds
= ηsUs, (4)

where the most common generator of the transformation is
ηs = [Trel, Hs] and s is the flow parameter. In the following,

we quantify the flow parameter with λ = (s/m2
N )−1/4 scaled

by the nucleon mass mN since this quantity can be inter-
preted as an effective momentum cutoff [17]. The SRG flow
equations with NN and 3N interactions are solved at the three-
body level. The SRG evolved interactions are the input to
our J-NCSM calculations from which we also get the nuclear
many-body wave functions corresponding to the SRG soft-
ened interaction, in the following called the “low-resolution
solution” and denoted as |�λ〉. In this solution, due to the
unitary transformation, the high-momentum information is
encoded at low momenta, different from the solution |�〉 of
the bare interactions. In principle, all the observables should
be calculated as

〈Ô〉 = 〈�|Ô|�〉 = 〈�λ|Ôλ|�λ〉. (5)

In practice, we know the wave function of the SRG softened
interaction |�λ〉 and the corresponding unitary transformation
Uλ; the observable can then be obtained using

〈Ô〉 = 〈�λ|UλÔU †
λ |�λ〉. (6)

The rms matter radius Rm and the rms point-proton radius
Rp or rms point-neutron radius Rn can be calculated using [53]

R2
m = 1

A

∑
i

(ri − Rc.m.)
2, (7)

R2
p = 1

Z

∑
i

1 + τz,i

2
(ri − Rc.m.)

2, (8)

R2
n = 1

N

∑
i

1 − τz,i

2
(ri − Rc.m.)

2, (9)

where Rc.m. = ∑
i ri/A, τz,i is the third component of the

isospin of the nucleon i (with τz = +1 for protons and τz =
−1 for neutrons), and A, N, Z label the numbers of nucleons,
neutrons, and protons.

To apply the SRG transformation to the wave function or
density, it is advantageous to reformulate the radius operator
in terms of two-nucleon distance operators. This operator can
be achieved through the two-body matrix element defined in
the normalization, specified as [38,54]

〈
R2

m

〉 = Z (Z − 1)

2A2

〈
R2

rel

〉
pp + N (N − 1)

2A2

〈
R2

rel

〉
nn + NZ

A2

〈
R2

rel

〉
np,

〈
R2

p

〉 = (A + N )(Z − 1)

2A2

〈
R2

rel

〉
pp + N2

A2

〈
R2

rel

〉
np

− N (N − 1)

2A2

〈
R2

rel

〉
nn,

〈
R2

n

〉 = −Z (Z − 1)

2A2

〈
R2

rel

〉
pp + Z2

A2

〈
R2

rel

〉
np

+ (A + Z )(N − 1)

2A2

〈
R2

rel

〉
nn, (10)

where the expectation value of these two-body operators can
be calculated using the two-body relative densities from our
J-NCSM wave functions. Our calculations are based on the
two-nucleon transition densities ρ

M ′M mt
α′α (p′, p) introduced in

[55] and available online at [56]. The transition densities
depend on the third component of isospin of the NN pair,
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mt = −1, 0, 1, and on the third component of total angular
momentum of the incoming and outgoing nuclei M and M ′,
M, M ′ = −J, . . . , J , where J is the angular momentum of the
considered state. The densities also depend on the magnitude
of the momenta p′, p and the NN partial waves of the pair α

and α′. Here, α refers to (ls) jm j t , namely to the NN orbital
relative orbital angular momentum l coupling with the spin
of the NN system s to the total NN angular momentum j
and its third component mj . In order to end up with densities
for the relative distance, a Fourier transformation needs to be
performed. Already performing the sum over all NN partial
waves, and averaging on the polarization of the nucleus, this
results in the densities

ρmt (r) = 1

2J + 1

∑
Mα

2

π

∫
d p p2

∫
d p′ p′2 jl (pr) jl (p′r)

× ρMM mt
αα (p′, p), (11)

which are normalized to∑
mt

∫
dr r2 ρmt (r) = 1. (12)

The rms distance of pp, nn and np pairs is then obtained by

〈
R2

rel

〉
pp = A(A − 1)

Z (Z − 1)

∫
dr r4ρmt =1(r),

〈
R2

rel

〉
nn = A(A − 1)

N (N − 1)

∫
dr r4ρmt =−1(r),

〈
R2

rel

〉
np = A(A − 1)

2NZ

∫
dr r4ρmt =0(r). (13)

In this way, we can calculate the rms radius using two-body
densities defined in Refs. [55,57] and the influence of SRG
transformations on the observables can be restored by per-
forming the unitary transformation on the two-body density
matrix. Since we are working with the two-body operator,
the flow equation of the unitary transformation Eq. (4) is
also evolved at the two-body level, neglecting the induced
three- and higher-body part. It is worth noting that mak-
ing the unitary transformation on this transitional density
also allows us to study observables with nonzero momentum
transfers [58].

In practice, the densities from NCSM calculations show
a significant dependence on the HO basis size (determined
by the maximal HO excitation NHO) and its frequency ω in
both short-range (r < 1.5 fm) and long-range (r larger than
about 3.5 fm) regions (see Fig. 3 of Ref. [31] and Figs. 1
and 2 in this work). The long-range observables including
〈r2〉 are only slightly influenced by the short-range part of the
wave functions. The NCSM density at large distances exhibits
Gaussian asymptotic behavior. Only at intermediate distances
is it characterized by the physically expected e−κr behavior.
The size of the intermediate interval gradually enlarges with
increasing basis size. To achieve convergence for long-range
operators, it is feasible to reasonably determine the long-range
density tail from calculations using various basis sizes. To ad-
dress this, we fit an exponential function αe−κr to the density
distributions obtained from the NCSM (for each ω and NHO)
over a specific range determined by two parameters (r1 and

r2). The “improved” density is then defined as

ρ(r) =
{

NCSM density, r � r2,

α exp (−κr), r > r2.
(14)

The parameters α and κ are carefully determined by ensuring
that the densities for different NHO at a given ω converge to
the same values at large distances, which will be introduced
later.

The newly improved densities are then normalized again
according to Eq. (11). This method aims to reconcile the
density distributions and achieve reliable long-range behavior
in NCSM calculations.

III. RESULTS AND DISCUSSIONS

In this work, we use the chiral semilocal momentum-space
(SMS) regularized NN potential at the order N4LO+ with
momentum cutoffs �N = 450 MeV and the 3NF at N2LO
(SMS N4LO+(450) + N2LO), which yields a generally good
description of the binding energies for light nuclei [13,14].
The uncertainties on the binding energies of light nuclei
have been discussed in Ref. [25]. In our calculations for
the ground states of 4,6,8He and 6,7,8Li, the interaction SMS
N4LO+(450) + N2LO is SRG evolved using the SRG flow
parameter λ = 1.88 fm−1. 4He is a well-bound light nucleus
with a large binding energy per nucleon. Therefore, it is very
compact and J-NCSM calculations converge particularly fast
for both energies and matter radii, leading to a mild ω and NHO

dependence. Thus, 4He is an ideal nucleus for validating the
method mentioned above.

In Fig. 1, we present our J-NCSM results for 4He. The
ground state energies illustrated in Fig. 1(b) exhibit con-
vergence at NHO = 6 for ω = 24 MeV and at NHO = 14 for
ω = 12 MeV. At this point, the results deviate from the value
28.32 MeV at NHO = 18 by less than 0.4% or 120 keV. This
is much better than the expected uncertainty of the chiral
expansion at N2LO of approximately 1 MeV [14]. For the
rms matter radii indicated by the open circles in Fig. 1(a), the
difference between NHO = 10 and NHO = 18 for ω = 24 MeV
and between NHO = 14 and NHO = 18 for ω = 12 MeV are
both less than 0.005 fm. For this quantity the chiral uncer-
tainty can be estimated from the deviations of radii at different
cutoffs and different orders beyond N2LO, resulting in
0.009 fm [14]. Therefore, the radii are sufficiently converged
for these model spaces. To assess the influence of the SRG
evolution on the matter radius, we also include results ob-
tained by applying the unitary transformation to the J-NCSM
wave functions [58] obtained from the calculations with the
SRG softened interaction, as indicated by the open diamonds
in Fig. 1(a). The converged matter radius is found to be
1.447 fm with SRG consideration and 1.466 fm without it,
both values being consistent with the experimental measure-
ment of 1.457 ± 0.010 fm [59]. The impact of the SRG
transformation on the radii is fairly small, approximately
0.02 fm for 4He, and is consistent with the conclusion in
Refs. [27,28]. This is attributed to the fact that the expecta-
tion value of 〈r2〉 is primarily determined by the long-range
behavior of the densities, whereas the effects of the uni-
tary transformation are localized to the short-range part,
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FIG. 1. (a) Ground state rms matter radii (a) and energies (b) of 4He as a function of the size of HO basis space for two HO frequencies
ω = 12 MeV (red lines) and 24 MeV (blue lines) calculated using the SMS N4LO+(450) + N2LO interaction. In (a) the different modifications
of the densities used are distinguished by the different symbols as indicated in the legend. In (b), different symbols distinguish the different
frequencies. The two-body relative density distributions (c) with or (d) without considering the SRG transformation in the selected basis sizes
are also shown for ω = 12 MeV on a linear scale. The SRG evolved densities without (dotted lines) and with (solid lines) improving the tail
part are shown for the cases of (e) ω = 12 MeV and (f) ω = 24 MeV. The crossing points are indicated by stars.

leaving the long-range part of the two-body relative density
largely unaffected. In Figs. 1(e) and 1(f), it is evident that
the two-body relative densities after considering the unitary
transformation initially increase with relative distance before
damping to zero, and the maximum is located at r ≈ 1 fm,
reflecting the short-range repulsive core of the two-nucleon
interaction [9]. More details on the SRG transformation on
4He in our J-NCSM calculation can be found in Appendix A.

A comparison of densities at small basis sizes with those at
NHO = 18 reveals that the long-range part does not exhibit the
correct asymptotic behavior due to the small basis size and
the limitation of the HO basis radial wave functions, which
display Gaussian asymptotic behavior, i.e., decaying as e−βr2

.
This can be better seen on the logarithmic scale in Figs. 1(c)
and 1(d).

In order to repair this deficiency with the modification of
Eq. (14), we need to identify a suitable matching radius r2.
By checking the densities for a fixed ω, we find that there
is a crossing point, r ≈ 4 fm, for different NHO and nearby
values. This crossing point can be distinctly observed in the
case of p-shell nuclei, for example 6Li shown in Fig. 2, but
is not so obvious for 4He because the changes of the 4He
radius versus NHO are small compared with those for p-shell

nuclei. This point has a minimal dependence on NHO and,
therefore, provides a good estimate for r2. We determine the
parameters α and κ by fitting to the uncorrected densities. This
turns out to be more reliable than extracting the slope from
the calculated nucleon separation energies, since these still
depend on the model space size also because of short-distance
contributions. Noting that there is an interval before the cross-
ing point r2 in which the densities only slightly depend on
the basis size and behave as e−κr , it is most natural to use
the densities in an interval within this region for fitting; e.g.,
for our example, intervals approximately stretching from 2 to
4 fm for ω = 24 MeV. Further increasing r2 is not advisable
since the Gaussian behavior sets in quickly when going be-
yond r ≈ 4 fm. In Appendix B, we describe how we set up a
series of intervals in this range and select the most appropriate
ones that lead to long-range densities that are most similar
for different values of NHO for the example of 6Li. The same
prescription applies to all nuclei considered. This procedure
guarantees that the convergence only affects the short-range
part of the interaction, which we need to obtain directly from
the J-NCSM solutions. The trivial long-distance behavior is
fixed by our correction procedure. After correction, the densi-
ties at various HO basis sizes fall off as e−κr in the long-range
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FIG. 2. (a) Ground state rms matter radii before correction and after correction, and (b) energies of 6Li as a function of the size of HO
basis space for four selected HO frequencies ω = 12, 16, 20, and 24 MeV calculated using the SMS N4LO+ (450 MeV) + N2LO interaction.
Different symbols distinguish the different frequencies as indicated in the legend. Results with (filled symbols) and without (open symbols)
SRG correction are shown. Experimental matter radii 2.35 ± 0.03 fm [59] (black square) and 2.44 ± 0.07 fm [60] (black diamond) are also
shown in (a). In (b), the black square is the experimental binding energy [61] and the additional solid points are the extrapolated values. On
the right, the two-body relative density distributions considering the SRG transformation for (c) ω = 12 MeV and for (d) ω = 24 MeV are also
shown. The solid lines are the densities without repair and the dotted lines are those after repair.

part, and the resulting radii are quickly converging in both
cases, with or without SRG transformation on the densities.
It is reassuring to see that the converged values agree with
and without the correction procedure. The results for 4He
demonstrate that, by correcting the tail part of the densi-
ties from J-NCSM calculations, the radius converges more
rapidly and confirms the effectiveness of density corrections
in enhancing the accuracy of J-NCSM predictions for nuclear
radii.

We then applied the procedures as mentioned above to the
p-shell helium and lithium isotopes, 6,8He and 6,7,8Li, whose
ground-state properties including energies and radii have been
extensively studied in various NCSM calculations with re-
alistic forces [31,37,41,53,62–68]. The direct comparison of
these results is not possible since different interactions and
strategies for extracting the radius have been employed. It
will nevertheless be instructive to relate our results to these
benchmark data later on.

The detailed results for an N = Z nucleus 6Li are pre-
sented as an example of extracting the converged radii from
J-NCSM calculations. In Figs. 2(a) and 2(b), we display the
J-NCSM calculations for the radii and energies for selected

HO frequencies and different basis sizes from NHO = 6 to
12. It has been shown in Ref. [14] that the binding energies
of light nuclei in question can be well described with SMS
N4LO+ (450 MeV) + N2LO interaction. Here, to estimate the
ground state energy, we just employ the commonly used three-
parameter formula E (NHO, ω) = E (ω)NHO→∞ + Ae−BNHO and
do not discuss the uncertainties caused by chiral expansion
and extrapolation. The extrapolated energies of different ω

values vary from 30.8 to 31.6 MeV, and are consistent with
the experiment, 31.9 MeV [61]. Regarding the radius, as ob-
served in other NCSM calculations [34], it is highly dependent
on both the basis size and frequencies. The calculated results
do not converge within the limited basis sizes, as shown in
Fig. 2(a). This dependence is also reflected in the long-range
part of the density distributions, which are strongly influenced
by the basis size, as illustrated in Figs. 2(c) and 2(d). Espe-
cially for ω = 12 MeV, the calculated radii in Fig. 2(a) are
almost independent on the basis size, but their densities are
sensitive to NHO in tail parts and at the origin. Based on the
densities from the J-NCSM, we modify the tail part, as shown
by the dashed lines in Figs. 2(c) and 2(d) and described in
Appendix B in more detail. The calculated radii for selected
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ω values tend to converge to the same value with increasing
NHO. As shown in Fig. 2(a), the results in NHO = 12 for
four selected ω values range from 2.33 to 2.39 fm, which is
consistent with the experimental value 2.35 ± 0.03 fm [59]
and slightly smaller than 2.44 ± 0.07 fm [60]. The result from
Ref. [43] based on the same interaction and using an ANN
for extrapolation is 2.291(18) fm. Interestingly, our values
are slightly larger but still marginally consistent. These results
underscore the necessity of density corrections for achieving
convergence in the radius calculations of p-shell nuclei within
the J-NCSM framework.

The results for other p shell nuclei 6,8He and 7,8Li are
shown in Fig. 3. In our J-NCSM calculations, the extrapolated
energies are mostly consistent with the data [61]. For 6He, a
two-neutron halo nucleus, our extrapolated energies ground
state energies are 27.89–29.05 MeV and the experimental
binding energy is 29.22 MeV [61]. The calculated radii with
improved densities, 2.32–2.40 fm for different ω at NHO = 12,
are comparable with the experimental data 2.29(6) fm [72],
2.30(7) fm [69], 2.44(7) fm [70], and 2.33(4) fm [71]. As
mentioned earlier, a direct comparison to results using other
interactions has to be done with care. However, the results
of Refs. [37,38] using the JISP16 interaction of 2.342(7)
and 2.32 fm are consistent with our values. However, our
value is slightly smaller than theoretical calculations with
the NCSM in the continuum 2.46(2) fm [74] using the Idaho
N3LO interaction [75] SRG-evolved without adding a 3NF.
For 8He, the extrapolated energies are smaller than the ex-
perimental results. This was already observed in Ref. [14].
In fact, using a lower order NN interaction [13], one obtains
better agreement with experiment. Therefore, it will be in-
teresting to see predictions for this nucleus using additional
higher-order 3NFs. However, our calculated radii with the
corrected densities are consistent with the data, 2.53(7) fm
[72], 2.45(7) fm [69], 2.50(8) fm [70], and 2.49(4) fm [71],
all of which have large uncertainties because the matter radius
is usually deduced from cross-section data, relying on the
adopted asymptotic behavior of the density tail. The calcu-
lations for ground state energies of 7,8Li are in agreement
with the experimental data. For the matter radii of Li iso-
topes, there are two sets of experimental data in Refs. [60]
and [71]. The former [60] shows relatively large matter radii
and our results, after improving the tail parts, are close to
them. Generally speaking, the results with corrections on
densities for different ω values can reach almost the same
values with increasing basis sizes. The comparison to the
ANN extrapolated values of Ref. [43] using the same inter-
action is quite interesting. Their results for the rms matter
radius of 7Li and 8Li are 2.325(14) and 2.327(14) fm, which
are visibly smaller than our results of 2.401–2.443 fm and
2.424–2.480 fm. Similar as for 6Li, the correction of the long-
range tail of the density also leads to an increase of the radius
for the neutron-rich isotopes. This indicates that the repaired
densities can help to improve predictions for radii for the p
shell.

Finally, we study the charge radii. For this observable,
the experimental uncertainties are much smaller. Therefore,
other aspects such as NN currents [47] become more important
when comparing to experiments. We obtain the charge radius

FIG. 3. (a) Ground state rms matter radii before correction and
after correction, and (b) energies for 6,8He (upper left and right)
and 7,8Li (lower left and right) as a function of the size of HO
basis space for four selected HO frequencies ω = 12, 16, 20, and
24 MeV calculated by using the SMS N4LO+ (450 MeV) + N2LO.
The available experimental matter radii are taken from Refs. [69–72]
for 6,8He and Refs. [60,71] for 7,8Li. The experimental binding ener-
gies from AME2020 [61] are also shown. Lines and symbols are as
in Figs. 2(a) and 2(b).

Rc by the relation [76]

R2
c = R2

p + r2
p + N

Z
r2

n + 3

4m2
p

, (15)

in which rp = 0.8409 fm [77] (see also [78]), r2
n =

−0.1155 fm2 [77], and 3/(4m2
p) = 0.033 fm2, neglecting the

NN current contributions. Note that the spin-orbit term [79]
also influences the charge radii but, due to its small contribu-
tions [79], we do not consider it in this work. The point-proton
rms radii are calculated by correcting the tail behavior of the
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FIG. 4. Calculated charge radii of 4,6,8He and 6,7,8Li (red points)
after improving the density tails and the comparison with available
experimental data (black points taken from Ref. [59] and black dia-
monds taken from Ref. [73]). Theoretical calculations for Li isotopes
are taken from Ref. [31] (blue diamonds) based on the NCSM with
JISP16 interaction and from Ref. [64] (green diamonds) based on
the CDB2k interaction. Blue triangle points of 6,8He are proton radii
from Ref. [38]. The blue and green solid points for 6He are taken
from Refs. [74] based on an older SRG chiral interaction and [37]
using the Daejeon16 interaction.

integrand in Eq. (10). In Fig. 4, we show our results (red
points) along with the comparison with the available exper-
imental data and other theoretical calculations. The error in
our result in this figure is the difference from the maximum
and minimum for four ω values with the largest basis size
for each nucleus. The error bars of our results represent the
differences between the maximum and mean values for the
charge radii obtained from four selected ω with the maximal
NHO for each nucleus. For 6He, both our calculations and the
results from [37,38] underestimate the experimental data, and
the result from the NCSM in continuum [74] agrees with the
data [65]. The significantly larger error bar for 8He is related
to the slow convergence of the energy and the larger difference
of the resulting energy for ω = 12 MeV (see Fig. 3). Probably
for this reason, the radius for ω = 12 MeV is 2.05 fm, which
is quite different from the result for other ω values, about
1.96 fm. Omitting the outlyer, we would end up with a smaller
radius that closely aligns with data and with the values from
Ref. [38] and a smaller error bar. In order to remain consistent
with the other values shown, we kept ω = 12 MeV in our
evaluation.

For 6,7,8Li, our results are slightly larger than other the-
oretical results [31,64] and are more consistent with the data.
A more careful comparison using the same interactions and/or
NN currents is beyond the scope of this work. We nevertheless
take the results as an indication that our method effectively
determines the point proton radius as well, leading to a slight
increase in values compared to previous work.

IV. SUMMARY

In our study, we conduct J-NCSM calculations to investi-
gate the nuclear properties of light nuclei 4,6,8He and 6,7,8Li
using the modern high-precision chiral two-nucleon and

three-nucleon forces SMS N4LO+ + N2LO with momentum
cutoff 450 MeV, focusing on ground state energies and non-
converged results of matter radii. The rms radii are calculated
using the two-body relative densities with or without con-
sidering the influence of the SRG evolution, and our results
demonstrate that the size of a nucleus is almost not affected.
The core idea of this work is that one can deduce the correct
long-range asymptotics for the densities from those of NCSM
calculations with limited basis sizes. Applying this idea to
the matter and charge radii of 4,6,8He and 6,7,8Li proves that
correcting density tails improves the convergence of matter
radii, thus providing an alternative way to extract the radii in
NCSM calculations with limited basis size. The results under-
score the importance of addressing density asymptotics and
basis size effects in achieving accurate theoretical predictions
that align closely with experimental observations. One can
also extend the same method to other long-range observables
to check the validity of our methods. For even better accu-
racies, it could be interesting to use the corrected densities
and ANNs along the lines of Ref. [43] to get converged re-
sults including uncertainty estimates. At the same time, the
transition densities that are the basis of the present study can
be used to include NN current contributions in observables.
Moreover, our approach can be implemented in other ab initio
calculations based on HO basis functions, thus providing a
potential way to address the long-standing issue of calcula-
tions with high-precision realistic nuclear forces producing
accurate energy values but underestimating the size of finite
nuclei.
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APPENDIX A: DEPENDENCE OF 4He MATTER RADII
ON THE SRG FLOW PARAMETER

We implemented SRG transformations on the two-body
relative wave functions. Therefore, the transformation of
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TABLE I. The rms matter radii of 4He using the two-body
relative densities with and without the SRG transformation on
the J-NCSM wave function. The adopted chiral interaction is
SMS N4LO+ + N2LO with momentum cutoff 400 MeV with three
flow parameters 1.88, 3.00, and 4.00 fm−1. The calculations from
Faddeev-Yakubovsky (FY) with the SRG unevolved interactions are
shown for comparison.

Without With

1.88 fm−1 1.463 fm 1.444 fm
3.00 fm−1 1.437 fm 1.428 fm
4.00 fm−1 1.435 fm 1.426 fm
bare (FY) 1.431 fm

the densities was done on the two-nucleon level, and
three-nucleon contribitions to the SRG transformation are

neglected. In the following, we aim at estimating the resulting
uncertainty due to this approximation for the radius. For this,
4He is an especially good test case due to its large binding
energy per nucleon. This increases the effects of the SRG
transformation on the radius compared to the other nuclei in
this work.

In Table I, we show the rms matter radii of 4He with and
without considering the SRG transformation. We used the
SMS N4LO+ + N2LO interaction with a momentum cutoff of
400 MeV and performed the J-NCSM calculation with ω =
16 MeV and NHO = 32. The is close to the optimal ω and the
model space is large enough for convergence. The difference
in matter radii between the two cases decreases with increas-
ing SRG flow parameter, with both converging towards the
bare result obtained using a Faddeev-Yakubovsky (FY) calcu-
lation in momentum space. This is consistent with the results
in Refs. [27,28]. At the flow parameter of 1.88 fm−1 mostly

FIG. 5. Two-body relative densities profiles for 6Li for ω = 16 MeV. The top panel shows densities with J-NCSM calculations and the
improved version with the tolerance of 5 × 10−5 for different basis sizes NHO = 6, 8, 10, and 12 from left to right; the middle panel is for the
tolerance of 5 × 10−6 and the bottom panel is for 3 × 10−6. In each panel, the calculated rms matter radii before and after correction are also
given. For the lowest panel, the tolerance is small enough to shrink the range of radii to one result for each NHO.
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FIG. 6. Densities profiles for 6Li. The best fit for the densities from J-NCSM calculations with ω = 12 MeV (top panel), 20 MeV (middle
panel), and 24 MeV (bottom panel). In each panel, the adapted tolerance and the calculated rms matter radii before and after correction are
also given.

used in our work, the deviation without SRG transformation
from the bare result for the radius is 0.032 fm−1. Including
the transformation, this deviation shrinks to 0.013 fm−1. The
latter number indicates the missing three-nucleon contribution
to this value.

APPENDIX B: DETERMINATION OF THE RADIUS OF 6Li

6Li with a small np separation energy is a good example on
which to test our new procedure for determining the radius.
The key point is to find a suitable long-range behavior deter-
mined by two parameters α and κ based on the densities from
limited basis sizes. Let us take the densities considering the
SRG transformation for ω = 16 MeV with NHO = 6, 8, 10, 12
as examples to show how we find the improved densities.
From the density profiles in Fig. 2, we get that there is a cross-
ing point at about r = 4.2 fm for the different NHO, which we
take as an approximation of our choice for r2. r1 is determined

by the crossover points between the SRG evolved and SRG
nonevolved densities. In the fitting process, r2 is set to be
varying in [4.2, 4.8] fm and [2.5, 3.5] fm for r1 in steps of
0.1 fm. Therefore, for each NHO, we have 77 different intervals
that lead to 77 different values of α and κ . To ensure the same
long-range behavior for different values of NHO, we select
from these 4 × 77 cases groups of four with different NHO, for
which the densities at r = 7.0 fm are the same within a given
tolerance. Of course, the number of groups for which this
condition holds decreases with decreasing tolerance. We then
lower the tolerance such that the predicted radii for a given
NHO are the same for each accepted case. For the example,
this point was reached for a tolerance of 3 × 10−6.

In Fig. 5, we show the densities from J-NCSM calculations
(dashed lines) and the improved ones (solid lines) for NHO =
6, 8, 10, and 12 for all accepted cases using three difference
tolerances. As can be seen, the different corrected densities
are very similar to each other. The range of the extracted radii
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goes towards a single value by construction when decreasing
the tolerance. Note that this does not imply that the radius
is independent of NHO. The small variations that remain here
are the result of the convergence at short distances. However,
the variation is significantly smaller than without applying
the correction, and the best value is shifted from 2.181 to
2.350 fm, which is a signifcant improvement.

In order to assess the uncertainty of the procedure, we show
the result of the correction procedure from above for different
values of ω in Fig. 6. It can be seen that, after correcting the
tail parts, the dependences of the calculated matter radius on
both NHO and ω become weaker compared with those directly
obtained from J-NCSM. The procedure improves the conver-
gence pattern and results in an increased accuracy for the radii.
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