001044990 001__ 1044990
001044990 005__ 20250912110158.0
001044990 0247_ $$2doi$$a10.1073/pnas.2422678122
001044990 0247_ $$2ISSN$$a0027-8424
001044990 0247_ $$2ISSN$$a1091-6490
001044990 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03475
001044990 0247_ $$2pmid$$a40711920
001044990 0247_ $$2WOS$$aWOS:001544079300001
001044990 037__ $$aFZJ-2025-03475
001044990 082__ $$a500
001044990 1001_ $$0P:(DE-HGF)0$$aTill, Katharina$$b0$$eCorresponding author
001044990 245__ $$aTrigger factor accelerates nascent chain compaction and folding
001044990 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2025
001044990 3367_ $$2DRIVER$$aarticle
001044990 3367_ $$2DataCite$$aOutput Types/Journal article
001044990 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1755078443_15164
001044990 3367_ $$2BibTeX$$aARTICLE
001044990 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001044990 3367_ $$00$$2EndNote$$aJournal Article
001044990 520__ $$aRecent work indicates that many chaperones bind protein chains already during their translation by ribosomes. While chaperones are thought to merely “hold” the nascent protein chains, current methods cannot study their conformational changes. We simultaneously image single chaperone binding and detect nascent protein conformation. We show that the chaperone trigger factor accelerates the folding of proteins as they emerge from the ribosome and reveal the mechanism: By enhancing the polypeptide collapse, it pushes residues together. Our mechanism promotes folding to occur cotranslationally, impacts the many processes that depend on it, like cotranslational protein assembly, translation arrest mitigation, and aggregation suppression, and can help explain how trigger factor interacts with downstream chaperones and how cells produce proteins with limited errors.
001044990 536__ $$0G:(DE-HGF)POF4-5352$$a5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001044990 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x1
001044990 588__ $$aDataset connected to DataCite
001044990 7001_ $$00000-0003-4644-7732$$aSeinen, Anne-Bart$$b1
001044990 7001_ $$0P:(DE-HGF)0$$aWruck, Florian$$b2
001044990 7001_ $$0P:(DE-HGF)0$$aSunderlikova, Vanda$$b3
001044990 7001_ $$0P:(DE-HGF)0$$aGalmozzi, Carla V.$$b4
001044990 7001_ $$0P:(DE-Juel1)131971$$aKatranidis, Alexandros$$b5
001044990 7001_ $$00000-0003-0521-7199$$aBukau, Bernd$$b6
001044990 7001_ $$00000-0001-7552-8393$$aKramer, Günter$$b7
001044990 7001_ $$00000-0002-7131-2568$$aTans, Sander J.$$b8
001044990 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.2422678122$$gVol. 122, no. 30, p. e2422678122$$n30$$pe2422678122$$tProceedings of the National Academy of Sciences of the United States of America$$v122$$x0027-8424$$y2025
001044990 8564_ $$uhttps://juser.fz-juelich.de/record/1044990/files/Trigger-factor-accelerates-nascent-chain-compaction-and-folding-Katranidis.pdf$$yOpenAccess
001044990 909CO $$ooai:juser.fz-juelich.de:1044990$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001044990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131971$$aForschungszentrum Jülich$$b5$$kFZJ
001044990 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5352$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001044990 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
001044990 9141_ $$y2025
001044990 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001044990 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-10
001044990 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-10
001044990 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-10
001044990 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10
001044990 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-10
001044990 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2022$$d2024-12-10
001044990 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001044990 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bP NATL ACAD SCI USA : 2022$$d2024-12-10
001044990 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-10
001044990 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-10
001044990 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
001044990 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001044990 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-10
001044990 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2024-12-10
001044990 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-10$$wger
001044990 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001044990 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
001044990 920__ $$lyes
001044990 9201_ $$0I:(DE-Juel1)ER-C-3-20170113$$kER-C-3$$lStrukturbiologie$$x0
001044990 980__ $$ajournal
001044990 980__ $$aVDB
001044990 980__ $$aUNRESTRICTED
001044990 980__ $$aI:(DE-Juel1)ER-C-3-20170113
001044990 9801_ $$aFullTexts