Home > Publications database > Trigger factor accelerates nascent chain compaction and folding > print |
001 | 1044990 | ||
005 | 20250912110158.0 | ||
024 | 7 | _ | |a 10.1073/pnas.2422678122 |2 doi |
024 | 7 | _ | |a 0027-8424 |2 ISSN |
024 | 7 | _ | |a 1091-6490 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2025-03475 |2 datacite_doi |
024 | 7 | _ | |a 40711920 |2 pmid |
024 | 7 | _ | |a WOS:001544079300001 |2 WOS |
037 | _ | _ | |a FZJ-2025-03475 |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Till, Katharina |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Trigger factor accelerates nascent chain compaction and folding |
260 | _ | _ | |a Washington, DC |c 2025 |b National Acad. of Sciences |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1755078443_15164 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Recent work indicates that many chaperones bind protein chains already during their translation by ribosomes. While chaperones are thought to merely “hold” the nascent protein chains, current methods cannot study their conformational changes. We simultaneously image single chaperone binding and detect nascent protein conformation. We show that the chaperone trigger factor accelerates the folding of proteins as they emerge from the ribosome and reveal the mechanism: By enhancing the polypeptide collapse, it pushes residues together. Our mechanism promotes folding to occur cotranslationally, impacts the many processes that depend on it, like cotranslational protein assembly, translation arrest mitigation, and aggregation suppression, and can help explain how trigger factor interacts with downstream chaperones and how cells produce proteins with limited errors. |
536 | _ | _ | |a 5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535) |0 G:(DE-HGF)POF4-5352 |c POF4-535 |f POF IV |x 0 |
536 | _ | _ | |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524) |0 G:(DE-HGF)POF4-5241 |c POF4-524 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a Seinen, Anne-Bart |0 0000-0003-4644-7732 |b 1 |
700 | 1 | _ | |a Wruck, Florian |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Sunderlikova, Vanda |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Galmozzi, Carla V. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Katranidis, Alexandros |0 P:(DE-Juel1)131971 |b 5 |
700 | 1 | _ | |a Bukau, Bernd |0 0000-0003-0521-7199 |b 6 |
700 | 1 | _ | |a Kramer, Günter |0 0000-0001-7552-8393 |b 7 |
700 | 1 | _ | |a Tans, Sander J. |0 0000-0002-7131-2568 |b 8 |
773 | _ | _ | |a 10.1073/pnas.2422678122 |g Vol. 122, no. 30, p. e2422678122 |0 PERI:(DE-600)1461794-8 |n 30 |p e2422678122 |t Proceedings of the National Academy of Sciences of the United States of America |v 122 |y 2025 |x 0027-8424 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1044990/files/Trigger-factor-accelerates-nascent-chain-compaction-and-folding-Katranidis.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1044990 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)131971 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |9 G:(DE-HGF)POF4-5352 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5241 |x 1 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2024-12-10 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b P NATL ACAD SCI USA : 2022 |d 2024-12-10 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b P NATL ACAD SCI USA : 2022 |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2024-12-10 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-10 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2024-12-10 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2024-12-10 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-10 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-3-20170113 |k ER-C-3 |l Strukturbiologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-3-20170113 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|