001     1044990
005     20250912110158.0
024 7 _ |a 10.1073/pnas.2422678122
|2 doi
024 7 _ |a 0027-8424
|2 ISSN
024 7 _ |a 1091-6490
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-03475
|2 datacite_doi
024 7 _ |a 40711920
|2 pmid
024 7 _ |a WOS:001544079300001
|2 WOS
037 _ _ |a FZJ-2025-03475
082 _ _ |a 500
100 1 _ |a Till, Katharina
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Trigger factor accelerates nascent chain compaction and folding
260 _ _ |a Washington, DC
|c 2025
|b National Acad. of Sciences
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1755078443_15164
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Recent work indicates that many chaperones bind protein chains already during their translation by ribosomes. While chaperones are thought to merely “hold” the nascent protein chains, current methods cannot study their conformational changes. We simultaneously image single chaperone binding and detect nascent protein conformation. We show that the chaperone trigger factor accelerates the folding of proteins as they emerge from the ribosome and reveal the mechanism: By enhancing the polypeptide collapse, it pushes residues together. Our mechanism promotes folding to occur cotranslationally, impacts the many processes that depend on it, like cotranslational protein assembly, translation arrest mitigation, and aggregation suppression, and can help explain how trigger factor interacts with downstream chaperones and how cells produce proteins with limited errors.
536 _ _ |a 5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)
|0 G:(DE-HGF)POF4-5352
|c POF4-535
|f POF IV
|x 0
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 1
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Seinen, Anne-Bart
|0 0000-0003-4644-7732
|b 1
700 1 _ |a Wruck, Florian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sunderlikova, Vanda
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Galmozzi, Carla V.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Katranidis, Alexandros
|0 P:(DE-Juel1)131971
|b 5
700 1 _ |a Bukau, Bernd
|0 0000-0003-0521-7199
|b 6
700 1 _ |a Kramer, Günter
|0 0000-0001-7552-8393
|b 7
700 1 _ |a Tans, Sander J.
|0 0000-0002-7131-2568
|b 8
773 _ _ |a 10.1073/pnas.2422678122
|g Vol. 122, no. 30, p. e2422678122
|0 PERI:(DE-600)1461794-8
|n 30
|p e2422678122
|t Proceedings of the National Academy of Sciences of the United States of America
|v 122
|y 2025
|x 0027-8424
856 4 _ |u https://juser.fz-juelich.de/record/1044990/files/Trigger-factor-accelerates-nascent-chain-compaction-and-folding-Katranidis.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1044990
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131971
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5352
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b P NATL ACAD SCI USA : 2022
|d 2024-12-10
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b P NATL ACAD SCI USA : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2024-12-10
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-10
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-3-20170113
|k ER-C-3
|l Strukturbiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-3-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21