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* Transformer-based models are state-of-the-art in * Modelling of the atmosphere as a stochastical system: p(y |x) = pg(§IX,a)
earth system modeling. y, §: dependant (model) state. g o -
 AtmoRep, a transformer-based atmospheric x, %: initial (model) state. I I | |
model, uses BERT-style masking during training. a: auxiliary information. JEERNE dy . i L [
* Systematic masking strategies are tested to + Trained with ERA52 reanalysis | - { sl (8] [l b oo 18] 2
probe quel Iearnmg. data (1979 - 2017), in a self- B i [ i i |
e Systematic masking can uncover overlooked supervised manner (BERT) ;
gepsn?etnues. trained model desion cho; * Variables:u, v, w,vo, d, t, q
* Guide future pretrained model design choices. 01 E— —
on model levels [96, 105, 114, .: ,; i
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MethOd Singleformer / Multiformer. E27 ] — R g U
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* Configuration A: Checkerboard geographical
masking at each model level and time step.
* Configuration AB: Combines geographical and Resu ItS
temporal masking.
e Configuration C2: 9/12 Temporal masking on Zero-shot Level-wise RMSE multiformer
intermediate levels, excluding first, middle and A 04082 04541 0.6435 07033 08186 0.3797 04252 0.6041 0.6787 0.7881
last tokens. AB  0.5806 0.6146 0.7835 0.8415 0.9427 0.8285 0.9010 1.0106 1.0858 1.0284
e Zero-shot and fined tuned experiments on 2 ) 0.4605 ) 0.51%7 ) ) 0.4550 ) 0.5114 )
ERAS5 temperature variable, year 2022.
e Study built on previous work? e Patterns A & C2: Multiformer outperforms Singleformer.

e Pattern AB: Singleformer performs better.
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* Most RMSE improvement occurs within the first 5 epochs of fine-tuning.
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(c) Fine-tuned. RMSE =0.2964 K. (c.2)

(a) Ground truth

* Fine-tuning significantly reduces error — both visually and

@ ’ G numerically (30% - 40% improvement).
(b.1) Zero-shot biais  (c.1) Fine-tuned biais (b.2) Zero-shot biais  (c.2) Fine-tuned biais
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