The Effect of BERT Training on Atmospheric Data Interpolation

Belkis Asma Semcheddine[¥], Savvas Melidonis[¥], Michael Langguth[¥], Martin Schultz^{¥,¤}, Christian Lessig[¢], Ilaria Luise[¢]

¥ Jülich Supercomputing Center, Forschungszentrum Jülich, 52428 Jülich, Germany. Contact Person: a.semcheddine@fz-juelich.de.

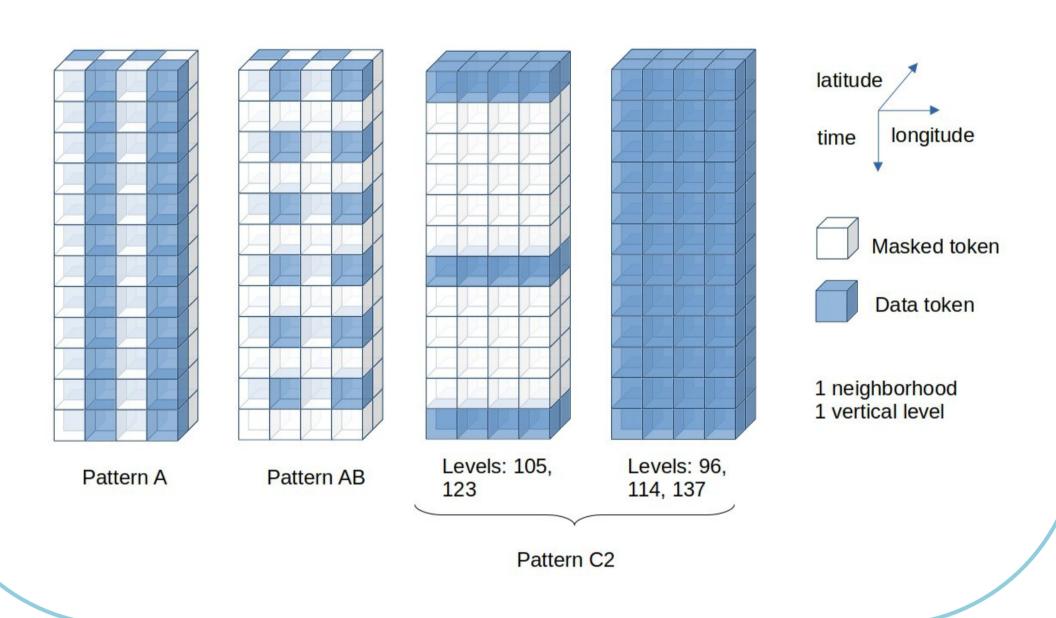
- □ University of Cologne, Department of Computer Science, Cologne, Germany.
- ¢ European Centre for Medium-Range Weather Forecasts, 53175 Bonn, Germany.

Motivation

- Transformer-based models are state-of-the-art in earth system modeling.
- AtmoRep, a transformer-based atmospheric model, uses BERT-style masking during training.
- Systematic masking strategies are tested to probe model learning.
- Systematic masking can uncover overlooked dependencies.
- Guide future pretrained model design choices.

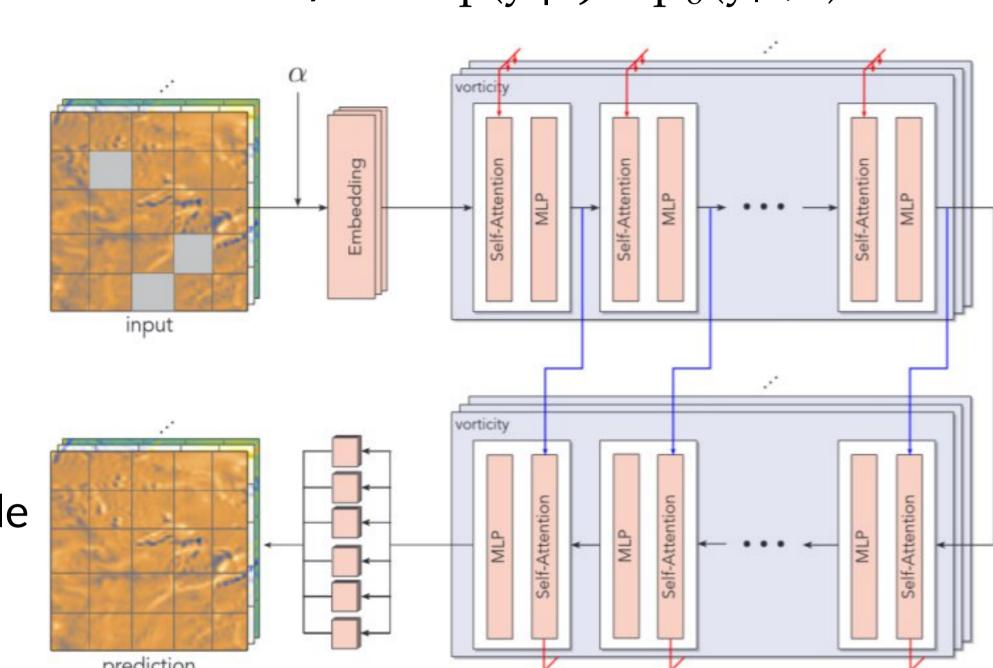
Method

- **Configuration A:** Checkerboard geographical masking at each model level and time step.
- Configuration AB: Combines geographical and temporal masking.
- Configuration C2: 9/12 Temporal masking on intermediate levels, excluding first, middle and last tokens.
- Zero-shot and fined tuned experiments on ERA5 temperature variable, year 2022.
- Study built on previous work³



AtmoRep¹

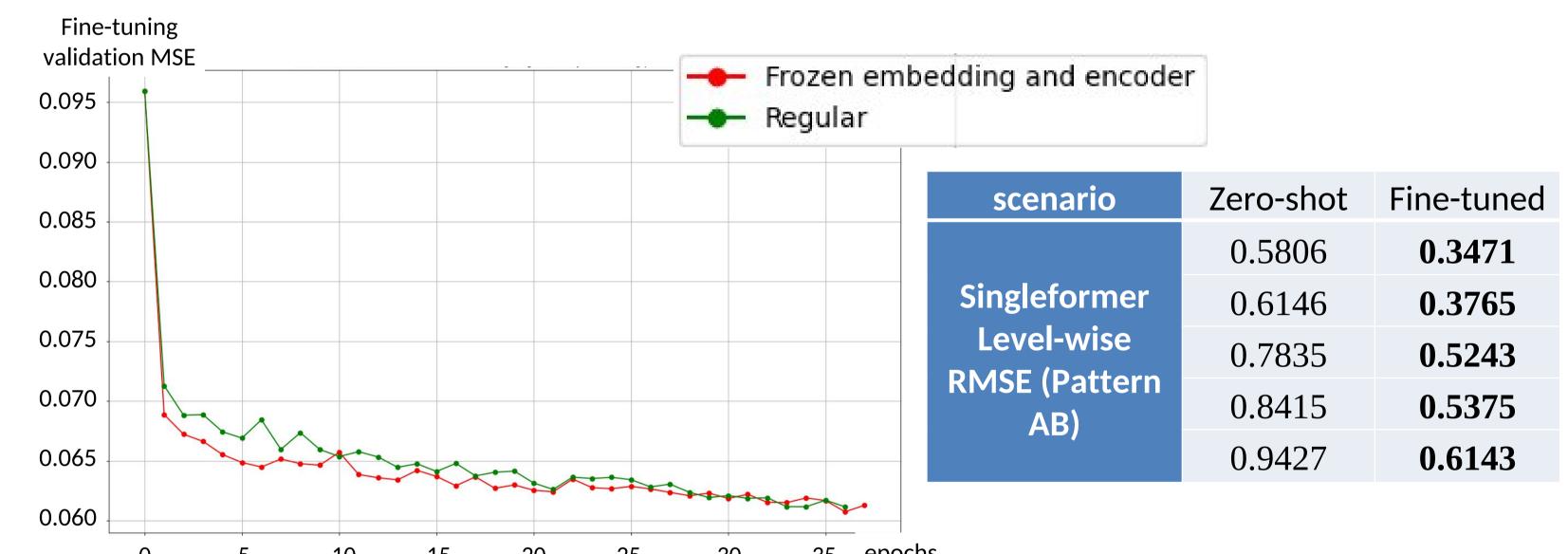
- Modelling of the atmosphere as a stochastical system: $p(y|x) \approx p_{\theta}(\hat{y}|\hat{x},\alpha)$
 - y, \hat{y} : dependant (model) state. x, \hat{x} : initial (model) state. α : auxiliary information.
- Trained with ERA5² reanalysis data (1979 – 2017), in a selfsupervised manner (BERT).
- Variables: u, v, w, vo, d, t, q on model levels [96, 105, 114, 123, 137] + tp as surface variable
- Modular configuration: Singleformer / Multiformer.



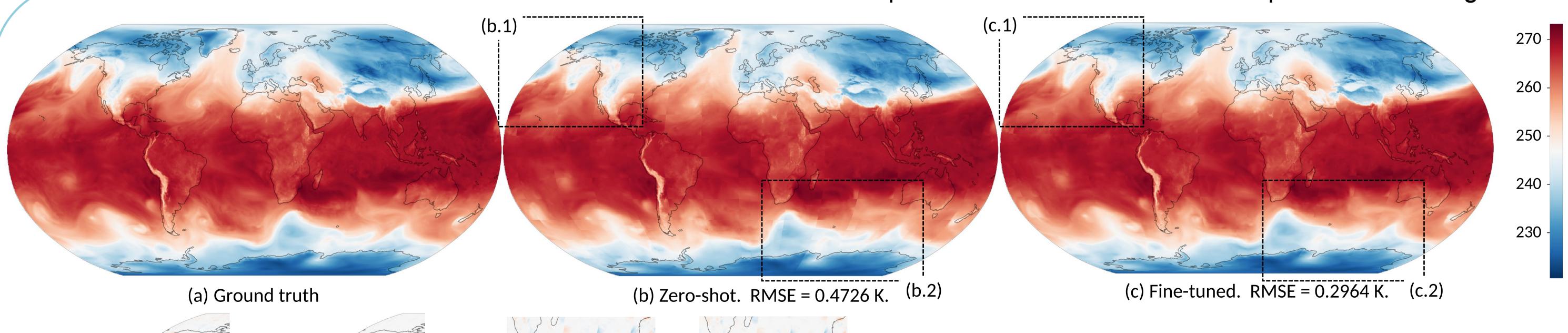
Results

run	Zero-shot Level-wise RMSE singleformer					Zero-shot Level-wise RMSE multiformer				
Α	0.4082	0.4541	0.6435	0.7033	0.8186	0.3797	0.4252	0.6041	0.6787	0.7881
AB	0.5806	0.6146	0.7835	0.8415	0.9427	0.8285	0.9010	1.0106	1.0858	1.0284
C2	-	0.4605	-	0.5187	-	-	0.4559	-	0.5114	-

- Patterns A & C2: Multiformer outperforms Singleformer.
- Pattern AB: Singleformer performs better.



Most RMSE improvement occurs within the first 5 epochs of fine-tuning.



(b.1) Zero-shot biais

(c.1) Fine-tuned biais

(b.2) Zero-shot biais (c.2) Fine-tuned biais Fine-tuning significantly reduces error — both visually and numerically (30% - 40% improvement).

Conclusion

- Temporal reconstruction is more effective than spatial/vertical.
- Fine-tuning is highly effective, 36% RMSE improvement on average, with rapid early gains.
- Results provide insight into how data is learned using BERT self-supervised learning.

References

- 1. Lessig et al., 2023. arXiv: 2308.13280
- 2. Hersbach, H. et al., 2020. Quarterly Journal of the Royal Meteorological Society 146, 1999-2049.
- 3. Patnala, A. et al. The NIC Symposium 2025, vol 52, pp 301-311.