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 A B S T R A C T

The accuracy of Machine Learning (ML) models is highly dependent on the hyperparameters that have to be 
chosen by the user before the training. However, finding the optimal set of hyperparameters is a complex 
process, as many different parameter combinations need to be evaluated, and obtaining the accuracy of each 
combination usually requires a full training run. It is therefore of great interest to reduce the computational 
runtime of this process. On High-Performance Computing (HPC) systems, several configurations can be 
evaluated in parallel to speed up this Hyperparameter Optimization (HPO). State-of-the-art HPO methods 
follow a bandit-based approach and build on top of successive halving, where the final performance of a 
combination is estimated based on a lower than fully trained fidelity performance metric and more promising 
combinations are assigned more resources over time. Frequently, the number of epochs is treated as a resource, 
letting more promising combinations train longer. Another option is to use the number of workers as a resource 
and directly allocate more workers to more promising configurations via data-parallel training. This article 
proposes a novel Resource-Adaptive Successive Doubling Algorithm (RASDA), which combines a resource-
adaptive successive doubling scheme with the plain Asynchronous Successive Halving Algorithm (ASHA). 
Scalability of this approach is shown on up to 1,024 Graphics Processing Units (GPUs) on modern HPC 
systems. It is applied to different types of Neural Networks (NNs) and trained on large datasets from the 
Computer Vision (CV), Computational Fluid Dynamics (CFD), and Additive Manufacturing (AM) domains, 
where performing more than one full training run is usually infeasible. Empirical results show that RASDA 
outperforms ASHA by a factor of up to 1.9 with respect to the runtime. At the same time, the solution quality 
of final ASHA models is maintained or even surpassed by the implicit batch size scheduling of RASDA. With 
RASDA, systematic HPO is applied to a terabyte-scale scientific dataset for the first time in the literature, 
enabling efficient optimization of complex models on massive scientific data.
1. Introduction

In recent years, the amount of openly available data has drastically 
increased. This includes datasets from different scientific fields, such 
as CV [1], Earth Observation (EO) [2], High-Energy Physics (HEP) [3], 
AM [4], or CFD [5]. To analyze these data efficiently and gain novel in-
sights based on hidden correlations, the use of Deep Learning (DL) tech-
niques and NNs has become essential due to their ability to automat-
ically extract complex patterns. As the prediction quality of these NN 
models is highly dependent on the so-called hyperparameters, which 
are frequently related to, e.g., the NN architecture or the optimizer, 
systematic HPO has become a crucial ingredient of ML workflows [6]. 
However, this search for optimal combinations of hyperparameters is 
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challenging due to often high-dimensional search spaces. Furthermore, 
the performance of a sample from the search space can only be evalu-
ated with a high degree of confidence after a full model training run. 
In the case of deep NNs trained on large datasets, this can become a 
major hurdle, even with extensive computing resources. Additionally, 
the search space is often diverse in nature. For example, the search 
space could be comprised of the learning rate, an optimizer-related 
parameter represented as floating point number, and the number of 
layers, an architectural parameter represented as an integer number 
𝑙 > 0. Categorical values, such as ‘‘type of optimizer’’ or ‘‘type of layer’’ 
are also possible. This makes the application of classical, gradient-based 
optimization methods infeasible. Hyperparameters also change under 
different models and datasets, making the generalization difficult to 
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assess. One of the state-of-the-art HPO methods is the ASHA [7]. It 
randomly samples multiple combinations, evaluates their performance 
with a lower training budget and then – after comparing their per-
formance – terminates under-performing trials early on. To reduce 
the time to solution, ASHA is frequently executed in parallel, where 
multiple NN configurations (trials) are evaluated at the same time. 

Modern HPC systems offer a natural setting for running this kind 
of workload. They feature accelerators, such as GPUs, that are ideally 
suited for efficient NN trainings (fast computation). Furthermore, these 
accelerators are connected by an optimized communication network 
that enables fast inter-node communication. While current distributed 
HPO methods, such as ASHA, leverage the fast computation capabil-
ities to train different hyperparameter candidates, the communication 
requirements are usually modest and limited to the exchange of the 
value of a certain metric, e.g., the current loss on the validation set for 
the comparison of the performance between trials.

This work introduces a novel method, the RASDA, that leverages
both HPC features to perform HPO efficiently at scale. It combines two 
levels of parallelism: (i) on the HPO level, different trials are run in par-
allel and (ii) on the level of each trial run, the NN training is accelerated 
with data-parallel training. The latter splits the datasets onto multiple 
GPUs and performs gradient synchronization after each training step. 
As these gradients are typically large, they require high-bandwidth 
communication. RASDA then leverages the successive doubling prin-
ciple, which progressively allocates more resources to more promising 
hyperparameter combinations, treating the amount of GPUs that are 
used for data-parallel training as resources (performing a doubling in 
space). In contrast, other successive halving techniques, such as the 
plain ASHA, treat the number of epochs during training of a model as 
resources and thus perform only halving in time, see Fig.  1.

The developed method is suitable for problems that involve large 
scientific datasets, where due to long training times, even with HPC 
resources it is not feasible to train more than the initially sampled 
hyperparameter configurations and users are interested in getting the 
best possible, fully-trained model in the shortest amount of time. There-
fore, this study performs an extensive evaluation of RASDA on dif-
ferent datasets from the CV, CFD, and AM domains, which are up 
to 8.3 Terrabyte (TB) in size, to prove its capability to deal with 
large datasets. These datasets are used to tune the hyperparameters of 
different types of NNs, namely a Convolutional Neural Network (CNN), 
an autoencoder and a transformer. RASDA is also benchmarked against 
the current state-of-the-art successive halving HPO method ASHA. The 
new RASDA code is openly available on GitHub1 for the community, 
see Table  A.8 for an overview of the repository.

In summary, the key contributions of RASDA are:

• Combination of successive halving in space with successive dou-
bling in time, allocating more GPUs to more promising trials.

• Reduces the runtime of more promising hyperparameter trials by 
leveraging a higher degree of parallelism in data-parallel training

• Leverages the inherent features of HPC systems, fast computation 
for the training, and fast communication for exchange of gradients 
during distributed training

• Outperforms the plain ASHA method in runtime and model per-
formance across different domains and on datasets up to 8.3 
TB.

This article is structured as follows. Section 2 summarizes the 
related work and highlights the differences to this work. The main 
details of RASDA are presented in Section 3. The application cases are 
explained in Section 4, followed by a presentation and discussion of the 
empirical results of the algorithm in Section 5. Finally, a summary and 
outlook are provided in Section 6.

1 RASDA source: https://github.com/olympiquemarcel/rasda.
2 
Fig. 1. Comparison of successive halving in time (top) and halving in time combined 
with doubling in space (bottom). Each line corresponds to the learning curve of a single 
HPO combination.

2. Related work

In ML, the performance of a certain model measured by a specific 
metric, such as the validation error, can be represented by the function 
𝑓 ∶  → R where  denotes the space of possible hyperparameter 
combinations. The primary goal of HPO is to minimize the objective 
function 𝑓 by identifying a hyperparameter configuration 𝑥∗ ∈ 
such that 𝑥∗ ∈ argmin𝑥∈ 𝑓 (𝑥). Evaluations of the objective function 
are costly because they typically involve fully training the model for 
each configuration. To optimize this workflow, several approaches 
exist. These are either based on approximating 𝑓 (𝑥) by a lower fi-
delity estimate, e.g., by the performance after a few training epochs 
or a model trained on a fraction of the data, or on choosing better 
hyperparameter configurations to evaluate, e.g., using BO. This section 
summarizes these approaches, i.e. Section 2.1 describes the successive 
halving method, Sections 2.2 and 2.3 summarize resource-adaptive as 
well as other HPO algorithms and Section 2.4 introduces the concept 
of data-parallel training.

2.1. Successive halving

Successive halving is a variant of Random Search [8], which uses 
the fact that most ML algorithms are iterative in nature. Intermediate 
performance results are thus accessible long before the algorithm is 
fully trained. The problem of finding optimal hyperparameters in a vast 
search space can then be framed in the context of a multi-armed bandit 
problem, where each arm represents a hyperparameter combination, 
and pulling an arm corresponds to training the combination for some 
iterations [9]. The goal is to identify the arm that yields the highest 
reward with the lowest budget possible. To do so in an efficient way, 
successive halving uniformly allocates an initial budget 𝐵 to 𝑛𝑎𝑟𝑚𝑠 arms 
and evaluates their performance after a few iterations at a milestone 
with budget 𝐵∕𝑛 . It then eliminates the worst-performing half of the 
𝑎𝑟𝑚𝑠
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arms and promotes the most promising-performing arms by continuing 
to pull them. Each of these successive halving steps is referred to as 
a rung. When following this procedure for a few steps from rung to 
rung, only one arm, i.e., the one with the best performance, remains at 
the end. Hyperband (HB) [10] extends this concept by iterating over 
different numbers of initial arms 𝑛𝑎𝑟𝑚𝑠 (also referred to as brackets) to 
evaluate.

However, when performing HPO at a larger scale, these methods 
are sensitive to so-called stragglers. To determine the combinations 
belonging to the under- and top-performing half, the performance 
measurement for all combinations needs to be available, which means 
that faster trials need to wait for the slower ones. ASHA addresses 
this scalability problem by deciding on a rolling basis which trials are 
worth continuing. When two trials have finished their initial number 
of iterations, the trial with the better performance is promoted. At the 
same time, the other trial is paused until the performance of the next 
completed trial can be juxtaposed. In contrast to HB, ASHA is mostly 
performed with only a single bracket, and was evaluated on up to 500
GPUs in [7].

Another possibility of finding a minimum of the objective function 
𝑓 is to use black-box optimization methods such as BO. The idea 
behind BO is to use a probabilistic model of 𝑓 that is based on data 
points observed in the past. In the case of HPO, this corresponds 
to finding new promising hyperparameter combinations based on the 
performance of past combinations. The BOHB algorithm [11] combines 
the BO process with HB for scheduling. To this aim, HB is used to 
choose the number of hyperparameter configurations and their assigned 
budget, while BO is used to choose the hyperparameters by deploying 
a tree parzen estimator [12].

The mentioned methods have in common that they focus only on 
identifying the most promising arm and delivering that hyperparameter 
combination as a result at the end of a run. In contrast, RASDA also 
ensures the full training of the best combination to yield a complete 
model.

2.2. Resource-adaptive schedulers

Most of the existing successive halving-based HPO schedulers treat 
the number of epochs or training time as resources (also known as 
fidelity in the literature). It is, however, also possible to treat the spatial 
amount of computational resources, e.g., the number of GPU, used 
for training a model as a fidelity. A low-fidelity measurement then 
corresponds to the performance of a NN trained with a small number 
of devices. The most relevant existing HPO schedulers that focus on 
this computational resource-adaptive scheduling are presented in the 
following.

HyperSched [13] introduces a scheduler to dynamically allocate re-
sources in time and space to the best-performing hyperparameter trials. 
It thereby not only identifies the most promising model but also trains it 
– ideally fully – by a fixed deadline. The main novelty of the algorithm 
is its deadline awareness, which means that it schedules fewer new 
trials as it approaches the deadline. This way, the exploration of new 
configurations is stopped in favor of deeper exploitation of the running 
trials. HyperSched is evaluated in [13] on different CV benchmarking 
datasets on up to 32 GPUs on Cloud computing instances.

Rubberband [14] extends HyperSched by leveraging the elasticity 
of the Cloud for the task of scheduling HPO workloads. It takes into 
account not only the performance of a combination but also the finan-
cial costs of a GPU hour, with the goal of minimizing the costs of an 
HPO job. Based on the idea of diminishing returns when scaling the 
training of a single model, the algorithm de-allocates resources (and 
thus saves costs) from less-promising trials, once a promising trial has 
been identified. It also creates a resource allocation plan a priori the 
run to optimize the performance of the single trials that are trained via 
distributed DL. The resource allocation plan is initialized with an initial 
3 
burn-in period during which training latencies and scaling performance 
of trials are measured.

Sequential Elimination with Elastic Resources (SEER) [15] further 
takes advantage of the elasticity in the cloud by adaptively allocating 
and de-allocating compute resources during the HPO run. At the same 
time, it focuses on maximizing the accuracy of trials, in combina-
tion with minimizing the total financial cost. Therefore, it limits the 
amount of workers allocated to the top trials once sub-linear scaling 
performance sets in.

Both Rubberband and SEER rely heavily on the adaptive allocation 
and de-allocation of GPU instances, which is possible in an elastic cloud 
setting but not on HPC systems, where the amount of GPUs allocated 
to the overall HPO job is usually static. HyperSched, meanwhile, fo-
cuses on maximizing the performance by the deadline. In contrast, the 
proposed RASDA method aims to deliver the best-possible result in the 
shortest amount of time.

2.3. Other HPO algorithms and libraries

Many other algorithms and libraries for performing HPO exist. 
These include BO-based libraries such as Dragonfly [16] and SMAC
[17], allowing the user to select different surrogate models and acqui-
sition functions. Optuna [18] also relies on BO and provides automated 
tracking and visualization of trials. Since parallel computing resources 
have become increasingly available in recent years, several algorithms 
have emphasized large-scale, distributed HPO: DeepHyper [19] focuses 
on performing asynchronous BO on HPC systems and has been applied 
to several scientific use cases [20–22]. Distributed evolutionary opti-
mization can be performed with Propulate [23] and Population Based 
Training (PBT) [24].

While most of these libraries support multi-fidelity HPO, none of 
them so far supports performing resource-adaptive scheduling of trials, 
which is, however, supported by RASDA.

2.4. Data-parallel deep learning

Data-parallel training is a technique to reduce the runtime of the 
training of DL models on large datasets by using multiple devices, such 
as GPUs. In data-parallel training, the training dataset  is divided 
among the number of workers 𝑁 , where each worker is assigned 
an identical copy of the model to train on a distinct subset of the 
data 1 ∪ 2 ∪ ⋯ ∪ 𝑁 . Specifically, each worker 𝑖 = 1…𝑁 runs 
one model forward and backward pass with a predefined number of 
samples, the local batch size 𝐵𝑆𝑙𝑜𝑐𝑎𝑙, of its subset of data to compute 
its local gradients 𝛥𝑤𝑖 with respect to the model parameters 𝑤. After 
the backward pass, these local gradients are aggregated and averaged 
across all workers by 

𝛥𝑤 = 1
𝑁

𝑁
∑

𝑖=1
𝛥𝑤𝑖, (1)

The averaged global gradient is then used to update the model 
parameters on all workers every 𝐵𝑆𝑔𝑙𝑜𝑏𝑎𝑙 = 𝐵𝑆𝑙𝑜𝑐𝑎𝑙 ⋅ 𝑁 samples [25]. 
To remain computationally efficient, each worker needs a sufficient 
amount of data to run the training, thus 𝐵𝑆𝑙𝑜𝑐𝑎𝑙 needs to be large. 
At the same time, 𝐵𝑆𝑔𝑙𝑜𝑏𝑎𝑙 increases linearly with 𝑁 . When 𝐵𝑆𝑔𝑙𝑜𝑏𝑎𝑙
becomes too large, it can impact the generalization performance for 
two reasons. First, the number of optimizer updates per epoch de-
creases, as an update is performed every 𝐵𝑆𝑔𝑙𝑜𝑏𝑎𝑙 samples. This can be 
addressed to some extent by scaling the learning rate with the number 
of devices [26]. This approach is, however, infeasible for an extremely 
large 𝐵𝑆𝑔𝑙𝑜𝑏𝑎𝑙, since in such a case also the learning rate becomes too 
large. Second, Stochastic Gradient Descent (SGD) with large batch sizes 
tends to converge to sharp minima [27] which does not generalize well, 
see [28] for more details.
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Fig. 2. Comparison of (plain) ASHA, performing successive halving only in the time domain, and RASDA, performing successive halving in the time and successive doubling in the 
space domain at the same time on an GPU cluster. In the RASDA case, when a trial is terminated, its workers are allocated to the more promising trials to increase the parallelism 
of the data-parallel training. Black arrows indicate communication of gradients between GPUs.
Algorithm 1 Resource Adaptive Successive Doubling Method
Input: trial_result, base_resources, sf, milestones
1: if trial_result["training_iteration"] ∈ milestones then
2:  current_rung ← milestones.index(trial_result["training_iteration"])
3:  new_resources ← base_resources × sfcurrent_rung
4:  return new_resources
5: else
6:  return None
7: end if
3. Resource-adaptive successive doubling algorithm

This section presents details on RASDA in Section 3.1 and provides 
an explanation on how issues with large batch size training, cf. Sec-
tion 2.4, are addressed in Section 3.2. The performance optimizations 
are presented in Section 3.3, while in Section 3.4 and Section 3.5 
the compatibility of RASDA with other tools and its dependcy on the 
hardware setup are summarized.

3.1. Algorithm design and implementation

The main idea of RASDA is to combine a successive halving step in 
the time domain, i.e., train more promising configurations for longer, 
and a successive doubling step in the spatial domain, i.e., allocate more 
workers to more promising configurations. This way, when reaching 
a rung milestone, the worst-performing trials are terminated (halving 
in time) and the free workers are allocated to the top-performing 
trials (doubling in space), see Fig.  2. The additional workers are then 
used to increase the parallelism of the data-parallel training of the 
configuration, which leads to faster training times.

For the re-allocation of workers, a second successive doubling rou-
tine in addition to the successive halving routine of ASHA is used 
(the resource allocation part is described in Alg. 1): All trials start 
out with an initial number of workers (𝚋𝚊𝚜𝚎_𝚛𝚎𝚜𝚘𝚞𝚛𝚌𝚎𝚜). When a trial 
reports a new 𝚝𝚛𝚒𝚊𝚕_𝚛𝚎𝚜𝚞𝚕𝚝, it is first checked if the current 𝚝𝚛𝚊𝚒𝚗𝚒𝚗𝚐_
𝚒𝚝𝚎𝚛𝚊𝚝𝚒𝚘𝚗, e.g., the current epoch, corresponds to one of the rung 
𝚖𝚒𝚕𝚎𝚜𝚝𝚘𝚗𝚎𝚜. At every rung 𝚖𝚒𝚕𝚎𝚜𝚝𝚘𝚗𝚎, the (plain) ASHA scheduler 
then reduces the number of running trials by the reduction factor 
𝚛𝚏. The resources for all trials that are allowed to continue are then 
increased with the scaling factor 𝚜𝚏 by the RASDA scheduler, yielding 
the 𝚗𝚎𝚠_𝚛𝚎𝚜𝚘𝚞𝚛𝚌𝚎𝚜 for the trial (following Alg. 1). If the reduction and 
scaling factors are equal, i.e. 𝚛𝚏 = 𝚜𝚏, all workers are continuously 
allocated to a trial. In practice, however, some trials do run faster than 
others. The advantage of the ASHA and RASDA scheduler is that they 
4 
both perform asynchronous halving and doubling, i.e., top-performing 
trials are promoted to the next rung even if not all trials in the 
current rung have reached their milestones. This reduces idling times 
between halving steps. It should be noted that due to this asynchronous 
execution, the percentage of trials terminated at each milestone can 
be smaller than 𝚛𝚏. As the total number of workers in the system is 
a constant, the trials that are allowed to continue might need to wait 
until their new resource requirements are met.

At these rung 𝚖𝚒𝚕𝚎𝚜𝚝𝚘𝚗𝚎𝚜, two processes occur: the (plain) ASHA 
scheduler reduces the number of running trials by the reduction factor 
𝚛𝚏, while Alg. 1 handles the reallocation of GPU resources among the 
remaining trials.

The total number of rungs and their corresponding milestones in the 
RASDA scheduler are calculated based on the minimum and maximum 
iterations min _𝑡 and max _𝑡, along with the scaling factor 𝚜𝚏, as

𝚗𝚞𝚖_𝚛𝚞𝚗𝚐𝚜 =
⎢

⎢

⎢

⎢

⎣

log
(

max _𝑡
min _𝑡

)

log(𝚜𝚏)

⎥

⎥

⎥

⎥

⎦

, (2)

𝚛𝚞𝚗𝚐_𝚖𝚒𝚕𝚎𝚜𝚝𝚘𝚗𝚎𝚜 = min _𝑡 ⋅ 𝚜𝚏𝑘, (3)

with 𝑘 = 0,… , 𝚗𝚞𝚖_𝚛𝚞𝚗𝚐𝚜. This ensures a geometric progression of the 
milestones, as described for ASHA by Li et al. [7].

The algorithm is implemented with Ray Tune [29], an open-source 
library for performing distributed HPO. Ray Tune orchestrates the op-
timization process by launching a single head node and several worker 
nodes on an HPC cluster. The head node then connects to the worker 
nodes and starts the trials. During training, the worker nodes report 
their current status including performance metrics to the head node 
that makes scheduling decisions, such as termination or continuation 
of new trials.

Ray Tune already features implementations of several successive 
halving methods. The implementation of RASDA therefore relies on 
the implementation of ASHA that exists already inside of Ray Tune 
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for performing the time-wise successive halving. For the spatial suc-
cessive doubling, RASDA makes use of the ResourceChangingScheduler
interface,2 enabling the modification of resource requirements for trials. 
At each milestone, the trial is saved, including the current weights of 
the model. If the decision is made to continue the training, the trial 
is relaunched with the new resource requirements. It should be noted, 
that the ASHA implementation of Ray Tune has some minor differences 
to the original algorithm in [7]. However, empirical evidence shows 
that these differences do not impact performance.

The data-parallel training part is handled by the PyTorch-DDP 
library [25], which uses the NVIDIA Collective Communications Library
(NCCL) backend3 for communication and gradient synchronization.

3.2. Large batch training

Recall from Section 2.4 that scaling the data-parallel training to a 
large number of devices and increasing 𝐵𝑆𝑔𝑙𝑜𝑏𝑎𝑙 can impact the gener-
alization performance of models. The following provides an intuitive 
explanation of how this issue is addressed by the RASDA scheduler.

McCandlish et al. [30] empirically studied large batch training for 
various models: they introduce the Gradient Noise Scale (GNS) metric, 
which serves as a noise-to-signal measure of the training progress. In 
theory, if the true gradient 𝐺𝑡𝑟𝑢𝑒 from performing full-batch Gradient 
Descent without the stochastic component would be available, it would 
be possible to compute a simple version of the GNS by 

GNS𝑠𝑖𝑚𝑝𝑙𝑒 =
tr(𝛴)
|𝐺𝑡𝑟𝑢𝑒|

2
, (4)

where 𝛴 is the per-data-sample covariance matrix of 𝐺𝑡𝑟𝑢𝑒. Essentially, 
the nominator measures the noise of the gradient, while the denomina-
tor measures its magnitude. As the DL model converges, the gradient 
decreases in size, which results in an increase of the GNS over training 
time. McCandlish et al. use an approximation to compute the GNS 
based on the estimated stochastic gradient 𝐺𝑒𝑠𝑡 and confirm that the 
GNS indeed increases over time.

Based on the GNS, Qiao et al. [31] introduce the concept of ‘‘statis-
tical efficiency’’ of the DL training, measuring the amount of training 
progress made per data sample processed in a batch. The key insight is 
that when the GNS is low, there is no benefit for the learning progress 
in adding more data samples to the batch (thus increasing 𝐵𝑆𝑔𝑙𝑜𝑏𝑎𝑙), as 
the stochastic gradient 𝐺𝑒𝑠𝑡 is a precise approximation of 𝐺𝑡𝑟𝑢𝑒 already. 
However, when the GNS is high, adding more data samples to the batch 
reduces the noise and leads to a better gradient approximation. As the 
GNS starts out small and increases over time, this justifies the usage 
of larger batch sizes during the later part of training. This approach 
has also been used successfully for HPO and scheduling tasks in the 
past [31,32].

Additionally, Smith et al. [33] find that increasing 𝐵𝑆𝑔𝑙𝑜𝑏𝑎𝑙 over time 
has a similar effect as decaying in the learning rate, which is common 
practice in DL nowadays [34]. Based on these findings, the following 
two insights can be derived:

• Training with a small 𝐵𝑆𝑔𝑙𝑜𝑏𝑎𝑙 generally helps generalization and 
is computationally efficient at the beginning of training, in terms 
of the training progress per processed data sample.

• Increasing 𝐵𝑆𝑔𝑙𝑜𝑏𝑎𝑙 over time and using a large 𝐵𝑆𝑔𝑙𝑜𝑏𝑎𝑙 as the 
model is converging is computationally efficient as well.

This aligns well with the scheduling of the RASDA algorithm. In 
the beginning, the trials train with a small 𝐵𝑆𝑔𝑙𝑜𝑏𝑎𝑙, i.e., the number 
of workers allocated for the data-parallel training is small. As time 
progresses, 𝐵𝑆𝑔𝑙𝑜𝑏𝑎𝑙 increases with each resource doubling step, as 

2 ResourceChangingScheduler (version 2.8.0): https://docs.ray.io/en/
latest/tune/api/doc/ray.tune.schedulers.ResourceChangingScheduler.html.

3 NCCL backend: https://github.com/NVIDIA/nccl.
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more and more workers are allocated to the data-parallel training. The 
evaluation in Section 5 shows that by leveraging this approach, the 
generalization capabilities of the final models match or exceed those 
of models that are continuously trained with a small 𝐵𝑆𝑔𝑙𝑜𝑏𝑎𝑙.

Another crucial point is the correct scaling of the learning rate 
with the batch size. In the evaluation in Section 5, the learning rate 
is scaled linearly with the number of workers, i.e., up to a factor of 
8×, when using SGD [35]. Furthermore, it follows a square-root scaling 
rule when using Adaptive Moment Estimation (ADAM) [36]. In the case 
of re-scaling, the learning rate is not immediately scaled to a larger 
value. Instead, there is a warm-up over one or two epochs. This re-
scaling parameter is included as a hyperparameter in the search space, 
see Table  1. Thereby, the HPO run automatically optimizes towards 
learning stability.

3.3. Performance optimization

To ensure efficient performance, several additional optimizations 
are made to the trials in the HPO loop. This includes selecting the 
𝐵𝑆𝑙𝑜𝑐𝑎𝑙 sufficiently large such that it fills the GPU memory in addition 
to the model for each of the applications. As the training datasets have 
to be loaded by each trial in parallel when performing HPO, they are 
loaded into shared memory when they fit in size. Training datasets that 
do not fit into shared memory are stored on a partition of the file system 
with high bandwidth to avoid bottlenecks. For data loading, the native 
PyTorch data loader as well as the NVIDIA DALI library4 are used.

A preliminary study determined that saving the model weights into 
a checkpoint too often can lead to bottlenecks [37]. Therefore, the 
checkpoint frequency is reduced to every five epochs and the rung 
milestones of the ASHA and RASDA scheduler are adjusted accordingly. 
Ray Tune needs an initial start-up time to launch the head node and 
all connected worker nodes. As this is the same for ASHA and RASDA, 
these timings are excluded from the measurements.

3.4. Compatibility with existing HPO tools

As RASDA functions as a pure scheduling tool, it can be integrated 
with various HPO and AutoML frameworks. Since it is already incor-
porated into the Ray Tune framework via the scheduler interface, it 
can be seamlessly used within workflows that leverage the scheduling 
infrastructure of Ray Tune. This includes BO tools such as BOHB [11], 
Optuna [18], and BayesOpt [38], as well as evolutionary optimization 
frameworks like HEBO [39]. In such cases, the Bayesian or evolutionary 
algorithm proposes new hyperparameter candidates to sample from the 
search space, while RASDAs time-wise successive halving determines 
which trials to terminate at different points in time. Concurrently, its 
space-wise successive doubling allocates additional GPU resources to 
the trials selected to continue. 

3.5. Dependency on hardware setup

As the main idea of RASDA is to perform successive doubling in 
the spatial domain, the scheduler operates most efficiently on HPC 
systems where the number of GPUs per node, the total number of 
allocated nodes, and the number of concurrent trials follow a power-
of-two configuration. This setup ensures that GPUs resources can be 
reassigned seamlessly across rung milestones, as illustrated in Fig.  2. 
However, such configurations may not always be available in practice. 
In scenarios where the number of GPUs is not a power of two or where 
the number of trials exceeds the number of available GPUs, RASDA 
relies on the underlying Ray Tune framework to manage resource 
scheduling and queuing. When more trials are submitted than there are 
GPUs available, not all trials can be launched simultaneously. In this 

4 DALI: https://developer.nvidia.com/dali.

https://docs.ray.io/en/latest/tune/api/doc/ray.tune.schedulers.ResourceChangingScheduler.html
https://docs.ray.io/en/latest/tune/api/doc/ray.tune.schedulers.ResourceChangingScheduler.html
https://github.com/NVIDIA/nccl
https://developer.nvidia.com/dali
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Table 1
Search space for the experiments, comprised of several optimizer-related and architec-
tural parameters. Superscripts indicate which hyperparameters are used as search space 
for which applications: CV, CFD, AM. The ‘‘re-scaling warm-up’’ parameter handles the 
gradual increase of the learning rate when the number of devices and with it 𝐵𝑆𝑔𝑙𝑜𝑏𝑎𝑙
is increased.
 Hyperparameter Type Range  
 Learning rateCV, CFD, AM Float log[1e−5, 1]  
 Weight decayCV, CFD, AM Float log(0, 1𝑒−1]  
 Initial warm-upCV, CFD, AM Int [1,2,3,4,5]  
 OptimizerCV, CFD, AM Cat [‘‘sgd’’, ‘‘adam’’]  
 Layer initializationCV, CFD Cat [‘‘kaiming’’ [[40]], 
 ‘‘xavier’’[41]]  
 Activation functionCV, CFD Cat [‘‘ReLU’’,  
 ‘‘LeakyReLU’’,  
 ‘‘SELU’’, ‘‘Tanh’’,  
 ‘‘Sigmoid’’]  
 Convolution kernel sizeCV, CFD Int [5,7,9]  
 Re-scaling warm-upCFD, AM Int [1,2]  
 Patch sizeAM Int [2, 4]  
 DepthAM Int [1, 2, 4]  
 Number of attention headsAM Int [3, 6, 12, 24]  
 MLP ratioAM Float [1., 2., 3., 4.]  

case, RASDA proceeds with its successive doubling routine for the first 
batch of trials that are scheduled. Remaining trials are queued and ex-
ecuted as resources become available. At the milestones, trials selected 
to continue are paused if their requested GPU allocation cannot be 
satisfied immediately, and they are resumed once sufficient resources 
are freed by completed or terminated trials. Although this queuing 
may introduce some latency, the promoted trials benefit from increased 
parallelism once resumed, resulting in significantly faster training. 
The benefit becomes especially pronounced in higher rungs, where 
larger resource allocations substantially reduce the training time per 
epoch. As a result, RASDA is still expected to deliver well-performing 
hyperparameter candidates faster than plain ASHA. Similarly, in cases 
where the total number of GPUs is not a power of two, the successive 
doubling scheme can still be applied, although some adaptation is 
required. Specifically, the values of 𝚜𝚏, 𝚛𝚏, min _𝑡, and max _𝑡 should be 
chosen to ensure that the maximum number of GPUs allocated per trial 
in the final rung does not exceed the available resources. It is generally 
advisable to avoid resource fragmentation across nodes, as splitting the 
GPUs on a node between multiple trials may reduce the efficiency of 
data-parallel training.

4. Application cases

To assess the proposed RASDA scheduler, its performance is eval-
uated across a range of different tasks from the CV, CFD, and AM 
domain on seperate training, validation and test dataset splits to avoid 
overfitting. The different cases feature various models with different 
hyperparameters to optimize as well as training datasets of different 
sizes. The application domains and the set-up of these tasks is described 
in the following.

4.1. Computer vision

For the CV domain, the hyperparameters of a ResNet50 [42] trained 
on the ImageNet dataset [1] are optimized, as this is still one of 
the most important reference benchmarks [43]. The ImageNet dataset 
contains 1,281,167 training images and 50,000 validation images di-
vided into 1000 object classes. In TFRecord file format, the dataset is 
approximately 146 Gigabyte (GB) in size.

The ResNet follows a basic CNN architecture with multiple residual 
connections between layers. The HPO search space for the ResNet 
includes several architectural hyperparameters, e.g., the type of acti-
vation functions or size of the input convolution kernel, as well as 
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optimizer-related parameters, such as the learning rate or weight decay, 
see Table  1 for an exhaustive list.

All models are trained for min _𝑡 = 5 to max _𝑡 = 40 epochs and a 
reduction and scaling factor 𝚜𝚏 = 𝚛𝚏 = 2 is chosen for the schedulers. 
Following Eq. (3), this results in rung milestones at epochs 5, 10, 20, and 
40.

As classification accuracy score, the percentages of the correctly 
classified training, validation, and test images are computed.

4.2. Additive manufacturing

The AM dataset is taken from the RAISE-LPBF benchmarking dataset
[4], which includes a selection of high-speed video recordings at 20,000 
frames per second of a laser powder bed fusion processes for stainless 
steel. The laser power and speed parameters are systematically varied. 
The goal is to reconstruct the power and speed of the laser from this 
video input. By comparing the predicted laser parameters with the 
pre-set parameters of the machine producing the laser, anomalies in 
the printing process can be detected faster, leading to more efficient 
quality control. The base ML model used for this task is a Swin-
Transformer [44], with the HPO search space consisting of multiple, 
Transformer-specific architectural and optimizer-related parameters, 
such as the number of attention heads, see Table  1. The model is trained 
on the C027 cylinder with a 80/20 split for training and validation and 
is approximately 60 GB in size. It is evaluated on the C028 cylinder 
for testing purposes. The Mean-Squared Error (MSE) between predicted 
and actual laser power and speed is computed to assess the accuracy 
of the SwinTransformer. All models are trained for min _𝑡 = 5 to max _𝑡
= 20 epochs and a reduction and scaling factor 𝚜𝚏 = 𝚛𝚏 = 2 is chosen 
for the schedulers. Following Eq. (3), this results in rung milestones at 
epochs 5, 10, and 20.

4.3. Computational fluid dynamics

The CFD dataset contains actuated turbulent boundary layer flow 
data, generated from a simulation [5]. The CFD dataset is stored in 
HDF5 file format and comprises several widths. In this study, widths of 
1000, 1200, and 1600 are used as training dataset (approximately 4.8 TB 
in size). Width of 1800 and 3000 are used as validation and test datasets 
(approximately 3.5 TB in size) to assess extrapolation performance. 
Altogether, the dataset is approximately 8.3 TB in size.

A convolutional autoencoder, selected from the AI4HPC reposi-
tory [45,46], is employed for flow reconstruction. The autoencoder 
comprises an encoder, a decoder, and a latent space representing a 
compressed, lower-dimensional version of the input. Both the encoder 
and decoder include four convolutional layers. In the encoder, the 
initial two layers perform down-sampling to compress the data, while 
in the decoder, they perform up-sampling to decompress the data in 
the latent space. The remaining layers perform regular convolution. 
The HPO search space consists of the type of activation function as an 
architectural parameter and several optimizer-related ones, see Table  1.

The autoencoders are trained for min _𝑡 = 5 to max _𝑡 = 40 epochs and 
a reduction and scaling factor 𝚜𝚏 = 𝚛𝚏 = 2 is chosen for the schedulers. 
Following Eq. (3), this results in rung milestones at epochs 5, 10, 20, and 
40.

The MSE between the input and the reconstructed output flow field 
is computed and used to assess the accuracy of the autoencoders. As 
a further measure of solution quality, also the relative reconstruction 
error is computed on the test set.

All experiments use reduction and scaling factors 𝚜𝚏 = 𝚛𝚏 = 2, 
as this provides a suitable trade-off between terminating unpromising 
trials and scaling up GPU resources. Choosing a scaling factor that is too 
large can lead to learning instabilities at the rung milestones, due to the 
abrupt increase in the number of GPUs allocated. Similarly, selecting a 
reduction factor that is too large may result in prematurely terminating 
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trials that could have shown strong performance in later training stages. 
The value min _𝑡 = 5 is selected to ensure sufficient initial training 
and to avoid interference with the learning rate warm-up phase, which 
can last up to five epochs (see Table  1). Terminating trials during this 
period could result in inaccurate early stopping decisions. The values 
max _𝑡 = 20 and max _𝑡 = 40 are chosen to provide adequate training 
time for convergence, while also considering computational resource 
constraints.

5. Results

This section presents the experimental results of running the pro-
posed algorithm on two supercomputer systems, which are introduced 
in Section 5.1. Section 5.2 focuses on the scaling performance of the 
RASDA algorithm on up to 1024 GPUs, while Section 5.3 compares 
the RASDA against the plain ASHA scheduler without any resource 
adaptation. Section 5.4 reports the performance of RASDA at the large 
scale, and in Section 5.5 different ablation experiments are presented.

5.1. Supercomputers

The two supercomputer modules used for the experiments in this 
study are both located at the Jülich Supercomputing Centre.

The first system is the JURECA-DC-GPU module [47] consisting of 
a total of 192 accelerated compute nodes. Each node is equipped with 
two AMD EPYC 7742 CPUs with 128 cores clocked at 2.25 GHz and four 
NVIDIA A100 GPUs, each with 40 GB high-bandwidth memory. The 
second HPC system is the JUWELS BOOSTER module [48] consisting 
of a total of 936 compute nodes. Each node is equipped with two 
AMD EPYC Rome 7402 CPUs with 48 cores clocked at 2.8 GHz, and 
four NVIDIA A100 GPU with 40 GB high-bandwidth memory. The 
main difference between the two systems is the number of InfiniBand 
interconnects: the JURECA-DC-GPU system features only two per node, 
while the JUWELS BOOSTER has four per node and therefore a higher 
network transmission bandwidth.

As of June 2024, both supercomputers are among the top 10% 
most energy-efficient supercomputers in the world, according to the 
GREEN500 list.5

5.2. Scaling performance

To evaluate the scalability of the RASDA algorithm, two weak 
scaling experiments, where the number of HPO configurations to eval-
uate is increased with the number of GPUs, are conducted with a 
lower number of training epochs. For this purpose, the CV application 
case as a representative benchmark for DL workloads is selected. It 
should be noted that while the asynchronous nature of the plain ASHA 
algorithm naturally leads to good scalability [7], the goal of this study 
is to demonstrate that the additional resource allocation mechanism in 
RASDA maintains this favorable scaling behavior.

The first weak scaling experiment considers a smaller scale of 8 to 64
GPUs. The runtime and accuracy of the RASDA algorithm is compared 
to the plain ASHA algorithm for training a ResNet50 on the ImageNet 
dataset for 20 epochs, see Fig.  3. It can be seen that on all scales 
(from 8 to 64 GPUs), the RASDA algorithm achieves consistently lower 
runtimes up to a factor of 1.45 faster than its ASHA counterpart while 
matching the final test set accuracy in almost all cases. Reduced test 
set accuracy is observed only at 8 and, to a lesser extent, 16 GPUs, as 
in these small settings the number of hyperparameter configurations 
evaluated is low and RASDA cannot yet fully benefit from large batch 
size training (see Section 3.2).

The second scaling experiment considers a large scale of 128 to 
1024 GPUs, see Fig.  4. The weak scalability of the RASDA algorithm 

5 GREEN500: https://top500.org/lists/green500/list/2024/06/.
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is evaluated by training a ResNet for six epochs. The results show that 
the algorithm maintains a high parallel efficiency of >0.84 on up to 
1024 GPUs.

It should be noted that strong scaling experiments that keep the 
number of hyperparameter configurations consistent across all scales 
are generally infeasible for this type of HPO workload, as evaluating a 
large number of configurations on a small number of GPUs would take 
too long.

The better scaling performance of RASDA compared to ASHA can 
also be observed when examining specific HPC metrics. RASDA con-
sistently achieves higher GPU utilization, as it avoids idling GPUs, see 
Fig.  2. RASDA achieves approximately ≈80% GPU utilization, compared 
to around ≈54% for the ASHA case. Since more GPUs are actively 
used, this also leads to higher I/O demand compared to ASHA, where 
idle GPUs consume less data. However, because RASDA achieves sig-
nificantly shorter runtimes, it is expected to be more energy-efficient 
overall.

5.3. Speed-ups and accuracy

To evaluate the performance of the RASDA algorithm in terms of 
speed-up and accuracy and to juxtapose it to the plain ASHA algorithm 
considering the application cases, the number of training epochs is 
increased within the min _𝑡 and max _𝑡 range specified in Section 4. 
The general results for the three application case, averaged over three 
different runs for all application cases, are presented in Tables  2, 3, 
and 4. The solution quality over time is presented in Fig.  5, an in-depth 
performance analysis of the runtimes per epoch is given in Fig.  6, and 
the change of batch size and number of GPUs per trial is depicted in 
Fig.  7. The results correspond to an exemplary best-performing trial 
from one of the three runs. The following paragraphs provide a more 
detailed discussion of these tables and figures.

For the CV application case, a total of 32 hyperparameter combina-
tions are evaluated simultaneously on 64 GPUs on the JURECA-DC-GPU 
system, with each parallel trial starting with two GPUs. Compared to 
the plain ASHA approach, the RASDA algorithm reduces the overall 
average runtime of the HPO process by a factor of ≈1.71 from 527 to 
308 min, see Table  2. The average solution quality, i.e., the training, 
validation, and test set accuracy of the best trial discovered during 
the process, slightly outperforms the ones of the plain ASHA. This 
indicates that scaling the batch size and the learning rate during the 
training process does not impact the learning process in this case. 
A closer look at one of the best-performing trials in Fig.  6 reveals 
that indeed the average runtime decreases in the RASDA case once 
the resource adaptation in space sets in after the first five epochs. As 
can be seen in Fig.  7, 𝐵𝑆𝑔𝑙𝑜𝑏𝑎𝑙 increases from 256 to 2048 during the 
training and the number of GPUs from 2 to 16 per trial for the RASDA 
case, while both stay constant in the plain ASHA case. The plot of the 
validation accuracy over the number of epochs in Fig.  5 confirms that 
RASDA slightly outperforms the ASHA approach in terms of solution 
quality.

For the AM application case, the HPO process evaluates 16 config-
urations, using a total of 128 GPUs on the JURECA-DC-GPU system. 
The trials start out with 8 GPUs each, which increases to 32 GPUs for 
the top-performing trials, at the same time increasing 𝐵𝑆𝑔𝑙𝑜𝑏𝑎𝑙 from 
64 to 256. As the models are only trained for a total amount of 20 
epochs (due to the long training times of transformer models), only two 
resource-doubling steps, i.e., at epoch 5 and epoch 10, take place, see 
Fig.  7. Table  3 provides an overview of the results in terms of runtime 
and solution quality. In comparison with the plain ASHA algorithm, a 
speed-up by a factor of 1.52 is achieved, reducing the required HPO 
runtime of the models from 96 to 63 min. On both the validation and 
test dataset, the best configuration found by RASDA again outperforms 
the one found with the plain ASHA after 20 epochs, as can be seen in 
Fig.  5.

https://top500.org/lists/green500/list/2024/06/
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Fig. 3. Comparison of ASHA and RASDA for training a ResNet50 model on ImageNet for 20 epochs on different scales on the JURECA-DC-GPU system.
Fig. 4. Weak scalability of the RASDA algorithm on up to 1024 GPUs on the JUWELS 
BOOSTER system, including ideal scalability for comparison.

The CFD application case features the largest dataset used in this 
study. The whole HPO process evaluates 16 configurations on 128 GPUs 
simultaneously on the JUWELS BOOSTER module. Each trial starts with 
8 GPUs, which is increased over time to 64 GPU by the RASDA algo-
rithm. As can be seen from Table  4, the most significant speed-up with a 
factor of ≈1.9 is achieved in this case, with RASDA reducing the runtime 
of the HPO process from 325 to 170 min. In this case, also the average 
MSE decreases by a factor of ≈1.88. This is likely due to the even 
better generalization capabilities caused by increasing the batch size 
over time (following the insights explained in Section 3.2). Obviously, 
this outperforms just annealing of the learning rate. This observation 
is in line with the findings of Smith et al. [33]. RASDA also achieves a 
low relative reconstruction error of just 1.15% on the test set.

In general, the most substantial speed-up is established on the 
largest dataset from the CFD domain. This is expected, as with a 
larger dataset, the benefit of adding more GPUs to the data-parallel 
training loop also increases. It is additionally interesting to observe 
that the speed-ups can be attained on both the JURECA-DC-GPU and 
JUWELS BOOSTER systems, although the latter features twice the 
network bandwidth. While RASDA already yields substantial benefits 
on JURECA-DC-GPU with its moderate network infrastructure, the dou-
bled network bandwidth of JUWELS BOOSTER further amplifies these 
speed-ups, highlighting how the approach particularly profits from fast 
interconnects.
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Table 2
HPO for the CV application case, trained for 40 epochs on 64 GPUs on the JURECA-
DC-GPU system. Results are averaged over three random seeds. Better results (↑ or ↓
depending on the metric) are underlined.
 Metric ASHA RASDA Diff.  
 Train accuracy ↑ 0.6976 0.7310 1.05× 
 Val accuracy ↑ 0.6728 0.6813 1.01× 
 Test accuracy ↑ 0.6688 0.6766 1.01× 
 Runtime (in seconds) ↓ 31637 18502 1.71× 

Table 3
HPO for the AM application case, trained for 20 epochs on 128 GPUs on the JURECA-
DC-GPU system. Results are averaged over three random seeds. Better results (↑ or 
↓ depending on the metric) are underlined. For better comparison the metrics were 
recomputed on a per-sample basis after the run.
 Metric ASHA RASDA Diff.  
 Val MSE ↓ 0.0455 0.0404 1.12× 
 Test MSE ↓ 0.0554 0.0516 1.07× 
 Runtime (in seconds) ↓ 5784 3803 1.52× 

Table 4
HPO for the CFD application case, trained for 40 epochs on 128 GPUs on the JUWELS 
BOOSTER module. Results are averaged over three random seeds. Better results (↑ or 
↓ depending on the metric) are underlined.
 Metric ASHA RASDA Diff.  
 Val MSE ↓ 5.28 × 10−6 2.81 × 10−6 1.88× 
 Test MSE ↓ 4.42 × 10−6 2.40 × 10−6 1.84× 
 Test relative error ↓ 0.0185 0.0115 1.61× 
 Runtime (in seconds) ↓ 19487 10242 1.90× 

5.4. Performance at 1024 GPUs scale

While the superiority of RASDA over plain ASHA has been con-
firmed in the previous experiments using 64 and 128 GPUs, a final 
RASDA experiment on a 1024 GPU scale is conducted on the JUWELS 
BOOSTER system. Again, using the CFD application case, the number 
of configurations to be evaluated is increased to 64, with each trial 
starting with 16 GPUs. The models are trained for min _𝑡 = 5 and 
max _𝑡 = 20 epochs. The HPO run took three hours and resulted in 
an improved model with a validation MSE of ≈3.63 × 10−7, a test MSE 
of ≈4.88 × 10−8 and a relative test error of ≈0.0016. Depending on the 
metric, this is a 7 to 49 times increase in solution quality, compared to 
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Fig. 5. Exemplary comparison of the performance (in terms of validation accuracy, training loss, and validation loss) of the best configuration found by ASHA and RASDA for the 
different application cases.
Fig. 6. Exemplary comparison of the runtime per epoch of the best configuration found by ASHA and RASDA for the different application cases. Note that for the CFD and AM 
case, the architectural parameters chosen by the respective HPO method also influence the model size, which is why here differences in runtime can be observed already during 
the first five epochs.
Fig. 7. Comparison of the global batch size and the number of GPUs per trial for ASHA and RASDA for the different application cases.
Table 5
Large-scale HPO for the CFD application case, evaluating 64 configurations, trained for 
a maximum of 20 epochs on 1024 GPUs on the JUWELS BOOSTER module, including 
relative improvement to the HPO run on 128 GPUs.
 Metric RASDA - 1024 GPUs vs. 128 GPUs 
 Val MSE 3.63 × 10−7 7.74×  
 Test MSE 4.88 × 10−8 49.22×  
 Test Rel. error 0.0016 7.17×  

the results of the HPO run on 128 GPUs (see Table  5), which highlights 
the potential of large-scale HPO for scientific ML.

5.5. Ablation studies

To evaluate the impact of different parameters on the performance 
of the RASDA method, two ablation studies are conducted.

5.5.1. Impact of reduction and scaling factors
All prior experiments use a scaling and reduction factor of 𝚜𝚏 =

𝚛𝚏 = 2. In this ablation study on the CV application case, these 
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Table 6
Comparison of ASHA and RASDA with 𝚜𝚏 = 𝚛𝚏 = 4 for the CV application case, trained 
for 20 epochs on 64 GPUs on the JURECA-DC-GPU system. Results are averaged over 
three random seeds. Better results (↑ or ↓ depending on the metric) are underlined.
 Metric ASHA RASDA Diff.  
 Train accuracy ↑ 0.6179 0.6556 1.06× 
 Val accuracy ↑ 0.6312 0.6348 1.01× 
 Test accuracy ↑ 0.6250 0.6340 1.01× 
 Runtime (in seconds) ↓ 17830 11157 1.60× 

factors are increased to 𝚜𝚏 = 𝚛𝚏 = 4. Since the number of GPU 
accelerators per node on HPC systems typically follows a power-of-
two configuration, allocating partial nodes may lead to performance 
degradation. To ensure sufficient training time between decision points, 
the same values of min _𝑡 = 5 and max _𝑡 = 20 epochs are retained. 
According to Eq. (3), this results in two rung milestones at epochs 5
and 20. As shown in Table  6, RASDA continues to outperform ASHA 
under these settings, achieving higher accuracy and a runtime speed-
up of ≈1.6×. However, this speed-up is smaller than the improvement 
observed with 𝚜𝚏 = 𝚛𝚏 = 2 (see Table  2). While a larger scaling factor 
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Table 7
Comparison of RASDA and BOHB on the CV application case, trained for 20 epochs 
on 64 GPUs on the JURECA-DC-GPU system, evaluating 32 hyperparameter samples. 
Results are averaged over three random seeds. Better results (↑ or ↓ depending on the 
metric) are underlined.
 Metric BOHB RASDA Diff.  
 Train accuracy ↑ 0.6130 0.6480 1.06× 
 Val accuracy ↑ 0.6253 0.6271 1.00× 
 Test accuracy ↑ 0.6222 0.6254 1.01× 
 Runtime (in seconds) ↓ 16825 11815 1.42× 

enables more aggressive allocation of GPU resources to promising trials, 
it also increases the time between rung milestones due to the geometric 
progression (see Eq. (3)). This observation indicates that 𝚛𝚏 = 2 is a 
suitable choice for the RASDA scheduler.

5.5.2. Comparison to Bayesian Optimization (BO)
Although the primary comparison is between RASDA and its closest 

scheduling-based counterpart, ASHA, other types of HPO and Neural 
Architecture Search (NAS) tools are also relevant. One commonly used 
method is Bayesian Optimization (BO). A comparison between RASDA 
and the BOHB algorithm on the CV application case is provided below. 
To function effectively, BO requires the ability to generate new hyper-
parameter configurations based on past evaluations. As shown in Table 
7, when both methods are evaluated with the same number of hyperpa-
rameter samples, RASDA outperforms BOHB in terms of accuracy and 
runtime. These results suggest that RASDA achieves a more favorable 
trade-off between runtime and solution quality compared to traditional 
BO-based approaches.

6. Summary and outlook

RASDA, a novel resource-adaptive successive doubling algorithm 
for HPO, suitable for running on HPC systems, was introduced. The 
key idea is to not only perform successive halving in time and let 
promising configurations train for longer (as is already the case in plain 
ASHA), but to combine it with successive doubling in space and allocate 
more computational resources to the data-parallel training of promising 
configurations.

The RASDA method was evaluated extensively on a standard bench-
marking task in the CV domain as well as on two large datasets (up to 
8.3 TB in size) from the CFD and AM domains. The results confirm 
that RASDA leads in these cases to speed-ups up to a factor of ≈1.9 in 
comparison to the ASHA algorithm.

Another property of RASDA is that it progressively scales up the 
global batch size of the trials as it adds more GPUs to their training 
loops. This helps them to avoid the degradation in solution quality, 
which is usually associated with large batch training. Remarkably, the 
approach did enhance the solution quality, aligning with literature 
findings suggesting that increasing the batch size can match or surpass 
the effects of learning rate annealing.

In addition, this study represents the first application of systematic 
HPO to a scientific dataset at the TB scale. A comparison of the 
application of RASDA on 128 and 1024 GPUs revealed a significant 
improvement in model performance. Specifically, the larger-scale ap-
plication identifies a model that is significantly superior in solution 
quality. These results demonstrate the scalability and efficiency of 
the RASDA method, thus paving the way for the application of HPO 
methods on current and future Exascale supercomputers. It should 
be noted, however, that RASDA relies heavily on efficient distributed 
training. As such, its full benefits are realized primarily on HPC systems 
equipped with accelerators such as GPUs. On non-accelerated systems 
or in settings with very limited communication bandwidth, potential 
inefficiencies may limit performance. 
10 
For future work, the optimal timing for scaling the batch size 
(through the addition of more GPUs to the data-parallel training loop) 
should be investigated more thoroughly. Furthermore, the impact of 
scaling the batch size on various hyperparameters beyond the learning 
rate (such as the weight decay values) warrants a deeper exploration.
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Appendix. RASDA GitHub repository

See Table  A.8.

Table A.8
Content of the RASDA GitHub Repository.
 File Description  
 startscript.sh Shell script to launch the HPO 

process via Ray on an HPC 
system 

 

 build_ray_env.sh Shell script to set up the Ray 
environment on an HPC system 

 

 adaptive_ray.py Main script to configure the 
schedulers and launch the HPO 
trials 

 

 res_allocate.py Core resource allocation logic for 
RASDA 

 

 cases/ImagenetTrainLoopDALI.py Script containing the training 
logic of the CV application 
example

 

Data availability

All used data is linked in the manuscript.

https://www.gauss-centre.eu/


M. Aach et al. Future Generation Computer Systems 175 (2026) 108042 
References

[1] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. 
Karpathy, A. Khosla, M. Bernstein, A.C. Berg, L. Fei-Fei, ImageNet large scale 
visual recognition challenge, Int. J. Comput. Vis. 115 (3) (2015) 211–252, 
http://dx.doi.org/10.1007/s11263-015-0816-y.

[2] G. Sumbul, M. Charfuelan, B. Demir, V. Markl, Bigearthnet: A large-scale 
benchmark archive for remote sensing image understanding, in: IGARSS 2019 
- 2019 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 
2019, pp. 5901–5904, http://dx.doi.org/10.1109/IGARSS.2019.8900532.

[3] J. Pata, E. Wulff, F. Mokhtar, D. Southwick, M. Zhang, M. Girone, J. Duarte, 
Improved particle-flow event reconstruction with scalable neural networks for 
current and future particle detectors, Commun. Phys. 7 (1) (2024/04/10) 124, 
http://dx.doi.org/10.1038/s42005-024-01599-5.

[4] C. Blanc, A. Ahar, K. De Grave, Reference dataset and benchmark for reconstruct-
ing laser parameters from on-axis video in powder bed fusion of bulk stainless 
steel, Addit. Manuf. Lett. 7 (2023) 100161, http://dx.doi.org/10.1016/j.addlet.
2023.100161.

[5] M. Albers, P.S. Meysonnat, D. Fernex, R. Semaan, B.R. Noack, W. Schröder, 
A. Lintermann, Actuated turbulent boundary layer flows dataset, 2023, http:
//dx.doi.org/10.34730/5dbc8e35f21241d0889906136cf28d26.

[6] M. Feurer, F. Hutter, Hyperparameter optimization, in: F. Hutter, L. Kotthoff, J. 
Vanschoren (Eds.), Automated Machine Learning: Methods, Systems, Challenges, 
Springer International Publishing, Cham, 2019, pp. 3–33, http://dx.doi.org/10.
1007/978-3-030-05318-5_1.

[7] L. Li, K. Jamieson, A. Rostamizadeh, E. Gonina, J. Ben-tzur, M. Hardt, 
B. Recht, A. Talwalkar, A system for massively parallel hyperparame-
ter tuning, in: I. Dhillon, D. Papailiopoulos, V. Sze (Eds.), Proceed-
ings of Machine Learning and Systems 2, MLSys 2020, Vol. 2, 2020, 
pp. 230–246, URL: https://proceedings.mlsys.org/paper_files/paper/2020/hash/
a06f20b349c6cf09a6b171c71b88bbfc-Abstract.html.

[8] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, J. Mach. 
Learn. Res. 13 (2012) 281–305, URL: http://jmlr.org/papers/v13/bergstra12a.
html.

[9] K. Jamieson, A. Talwalkar, Non-stochastic best arm identification and hyperpa-
rameter optimization, in: A. Gretton, C.C. Robert (Eds.), Proceedings of the 19th 
International Conference on Artificial Intelligence and Statistics, in: Proceedings 
of Machine Learning Research, vol. 51, PMLR, 2016, pp. 240–248, URL: https:
//proceedings.mlr.press/v51/jamieson16.html.

[10] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, A. Talwalkar, Hyperband: A 
novel bandit-based approach to hyperparameter optimization, J. Mach. Learn. 
Res. 18 (185) (2018) 1–52, URL: https://jmlr.org/papers/v18/16-558.html.

[11] S. Falkner, A. Klein, F. Hutter, BOHB: Robust and efficient hyperparameter 
optimization at scale, in: Proceedings of the 35th International Conference 
on Machine Learning, Vol. 80, PMLR, 2018, pp. 1436–1445, URL: https://
proceedings.mlr.press/v80/falkner18a.html.

[12] J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms for hyper-parameter op-
timization, in: J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, K.Q. Weinberger 
(Eds.), Proceedings of the 24th International Conference on Neural Information 
Processing Systems, NIPS ’11, Vol. 24, Curran Associates, Inc., 2011.

[13] R. Liaw, R. Bhardwaj, L. Dunlap, Y. Zou, J.E. Gonzalez, I. Stoica, A. Tumanov, 
HyperSched: Dynamic resource reallocation for model development on a dead-
line, in: Proceedings of the ACM Symposium on Cloud Computing, SoCC ’19, 
ACM, 2019, pp. 61–73, http://dx.doi.org/10.1145/3357223.3362719.

[14] U. Misra, R. Liaw, L. Dunlap, R. Bhardwaj, K. Kandasamy, J.E. Gonzalez, I. Stoica, 
A. Tumanov, RubberBand: cloud-based hyperparameter tuning, in: Proceedings 
of the Sixteenth European Conference on Computer Systems, EuroSys ’21, ACM, 
2021, pp. 327–342, http://dx.doi.org/10.1145/3447786.3456245.

[15] L. Dunlap, K. Kandasamy, U. Misra, R. Liaw, M. Jordan, I. Stoica, J.E. Gonzalez, 
Elastic hyperparameter tuning on the cloud, in: Proceedings of the ACM 
Symposium on Cloud Computing, SoCC ’21, ACM, 2021, pp. 33–46, http://dx.
doi.org/10.1145/3472883.3486989.

[16] K. Kandasamy, K.R. Vysyaraju, W. Neiswanger, B. Paria, C.R. Collins, J. 
Schneider, B. Poczos, E.P. Xing, Tuning hyperparameters without grad students: 
Scalable and robust Bayesian optimisation with dragonfly, J. Mach. Learn. Res. 
21 (81) (2020) 1–27, URL: http://jmlr.org/papers/v21/18-223.html.

[17] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C. Benjamins, 
T. Ruhkopf, R. Sass, F. Hutter, SMAC3: A versatile Bayesian optimization package 
for hyperparameter optimization, J. Mach. Learn. Res. 23 (54) (2022) 1–9, URL: 
http://jmlr.org/papers/v23/21-0888.html.

[18] T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna: A next-generation 
hyperparameter optimization framework, in: Proceedings of the 25th ACM 
SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 
’19, ACM, 2019, pp. 2623–2631, http://dx.doi.org/10.1145/3292500.3330701.

[19] P. Balaprakash, M. Salim, T.D. Uram, V. Vishwanath, S.M. Wild, DeepHyper: 
Asynchronous hyperparameter search for deep neural networks, in: 2018 IEEE 
25th International Conference on High Performance Computing, IEEE, 2018, pp. 
42–51, http://dx.doi.org/10.1109/HiPC.2018.00014.
11 
[20] P. Balaprakash, R. Egele, M. Salim, S. Wild, V. Vishwanath, F. Xia, T. Brettin, 
R. Stevens, Scalable reinforcement-learning-based neural architecture search for 
cancer deep learning research, in: Proceedings of the International Conference for 
High Performance Computing, Networking, Storage and Analysis, SC ’19, ACM, 
2019, http://dx.doi.org/10.1145/3295500.3356202.

[21] S. Jiang, P. Balaprakash, Graph neural network architecture search for molecular 
property prediction, in: 2020 IEEE International Conference on Big Data, Big 
Data, IEEE, 2020, pp. 1346–1353, http://dx.doi.org/10.1109/BigData50022.
2020.9378060.

[22] X. Liu, M. Rüttgers, A. Quercia, R. Egele, E. Pfaehler, R. Shende, M. Aach, 
W. Schröder, P. Balaprakash, A. Lintermann, Refining computer tomography 
data with super-resolution networks to increase the accuracy of respiratory flow 
simulations, Future Gener. Comput. Syst. 159 (2024) 474–488, http://dx.doi.org/
10.1016/j.future.2024.05.020.

[23] O. Taubert, M. Weiel, D. Coquelin, A. Farshian, C. Debus, A. Schug, A. Streit, M. 
Götz, Massively parallel genetic optimization through asynchronous propagation 
of populations, in: A. Bhatele, J. Hammond, M. Baboulin, C. Kruse (Eds.), High 
Performance Computing. ISC High Performance 2023, in: LNCS, vol. 13948, 
Springer, 2023, pp. 106–124, http://dx.doi.org/10.1007/978-3-031-32041-5_6.

[24] M. Jaderberg, V. Dalibard, S. Osindero, W.M. Czarnecki, J. Donahue, A. Razavi, 
O. Vinyals, T. Green, I. Dunning, K. Simonyan, C. Fernando, K. Kavukcuoglu, 
Population based training of neural networks, 2017, arXiv:1711.09846.

[25] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke, J. 
Smith, B. Vaughan, P. Damania, S. Chintala, PyTorch distributed: Experiences 
on accelerating data parallel training, Proc. Very Large Data Base Endow. 13 
(12) (2020) 3005–3018, http://dx.doi.org/10.14778/3415478.3415530.

[26] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. 
Tulloch, Y. Jia, K. He, Accurate, large minibatch SGD: Training ImageNet in 1 
hour, 2017, http://dx.doi.org/10.48550/ARXIV.1706.02677, arXiv:1706.02677.

[27] S. Hochreiter, J. Schmidhuber, Flat minima, Neural Comput. 9 (1) (1997) 1–42, 
http://dx.doi.org/10.1162/neco.1997.9.1.1.

[28] N.S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, P.T.P. Tang, On large-
batch training for deep learning: Generalization gap and sharp minima, 2017, 
http://dx.doi.org/10.48550/arXiv.1609.04836, arXiv:1609.04836.

[29] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J.E. Gonzalez, I. Stoica, Tune: A 
research platform for distributed model selection and training, 2018, arXiv:
1807.05118.

[30] S. McCandlish, J. Kaplan, D. Amodei, O.D. Team, An empirical model of 
large-batch training, 2018, arXiv:1812.06162.

[31] A. Qiao, S.K. Choe, S.J. Subramanya, W. Neiswanger, Q. Ho, H. Zhang, G.R. 
Ganger, E.P. Xing, Pollux: Co-adaptive cluster scheduling for goodput-optimized 
deep learning, in: 15th USENIX Symposium on Operating Systems Design and 
Implementation, OSDI 21, USENIX Association, 2021, pp. 1–18, URL: https:
//www.usenix.org/conference/osdi21/presentation/qiao.

[32] M. Aach, R. Sedona, A. Lintermann, G. Cavallaro, H. Neukirchen, M. Riedel, 
Accelerating hyperparameter tuning of a deep learning model for remote sensing 
image classification, in: IGARSS 2022 - 2022 IEEE International Geoscience 
and Remote Sensing Symposium, IEEE, 2022, pp. 263–266, http://dx.doi.org/
10.1109/IGARSS46834.2022.9883257.

[33] S.L. Smith, P.-J. Kindermans, Q.V. Le, Don’t decay the learning rate, increase 
the batch size, in: International Conference on Learning Representations, 2018, 
URL: https://openreview.net/pdf?id=B1Yy1BxCZ.

[34] I. Loshchilov, F. Hutter, SGDR: Stochastic gradient descent with warm restarts, 
in: International Conference on Learning Representations, 2017, URL: https:
//openreview.net/pdf?id=Skq89Scxx.

[35] A. Krizhevsky, One weird trick for parallelizing convolutional neural networks, 
2014, arXiv:1404.5997.

[36] S. Malladi, K. Lyu, A. Panigrahi, S. Arora, On the SDEs and scaling rules 
for adaptive gradient algorithms, in: S. Koyejo, S. Mohamed, A. Agarwal, 
D. Belgrave, K. Cho, A. Oh (Eds.), Proceedings of the 36th International 
Conference on Neural Information Processing Systems, NIPS ’22, Curran Asso-
ciates, Inc., 2022, URL: https://proceedings.neurips.cc/paper_files/paper/2022/
file/32ac710102f0620d0f28d5d05a44fe08-Paper-Conference.pdf.

[37] M. Aach, R. Sarma, E. Inanc, M. Riedel, A. Lintermann, Short paper: Accelerating 
hyperparameter optimization algorithms with mixed precision, in: Proceedings 
of the SC ’23 Workshops of the International Conference on High Performance 
Computing, Network, Storage, and Analysis, in: SC-W ’23, ACM, 2023, pp. 
1776–1779, http://dx.doi.org/10.1145/3624062.3624259.

[38] R. Martinez-Cantin, BayesOpt: A Bayesian optimization library for nonlinear 
optimization, experimental design and bandits, J. Mach. Learn. Res. 15 (115) 
(2014) 3915–3919, URL: http://jmlr.org/papers/v15/martinezcantin14a.html.

[39] A.I. Cowen-Rivers, W. Lyu, R. Tutunov, Z. Wang, A. Grosnit, R.R. Griffiths, A.M. 
Maraval, H. Jianye, J. Wang, J. Peters, H. Bou-Ammar, HEBO: Pushing the limits 
of sample-efficient hyper-parameter optimisation, J. Artif. Int. Res. 74 (2022) 
http://dx.doi.org/10.1613/jair.1.13643.

[40] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-
level performance on ImageNet classification, in: Proceedings of the 2015 IEEE 
International Conference on Computer Vision, ICCV, IEEE, 2015, pp. 1026–1034, 
http://dx.doi.org/10.1109/ICCV.2015.123.

http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/IGARSS.2019.8900532
http://dx.doi.org/10.1038/s42005-024-01599-5
http://dx.doi.org/10.1016/j.addlet.2023.100161
http://dx.doi.org/10.1016/j.addlet.2023.100161
http://dx.doi.org/10.1016/j.addlet.2023.100161
http://dx.doi.org/10.34730/5dbc8e35f21241d0889906136cf28d26
http://dx.doi.org/10.34730/5dbc8e35f21241d0889906136cf28d26
http://dx.doi.org/10.34730/5dbc8e35f21241d0889906136cf28d26
http://dx.doi.org/10.1007/978-3-030-05318-5_1
http://dx.doi.org/10.1007/978-3-030-05318-5_1
http://dx.doi.org/10.1007/978-3-030-05318-5_1
https://proceedings.mlsys.org/paper_files/paper/2020/hash/a06f20b349c6cf09a6b171c71b88bbfc-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2020/hash/a06f20b349c6cf09a6b171c71b88bbfc-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2020/hash/a06f20b349c6cf09a6b171c71b88bbfc-Abstract.html
http://jmlr.org/papers/v13/bergstra12a.html
http://jmlr.org/papers/v13/bergstra12a.html
http://jmlr.org/papers/v13/bergstra12a.html
https://proceedings.mlr.press/v51/jamieson16.html
https://proceedings.mlr.press/v51/jamieson16.html
https://proceedings.mlr.press/v51/jamieson16.html
https://jmlr.org/papers/v18/16-558.html
https://proceedings.mlr.press/v80/falkner18a.html
https://proceedings.mlr.press/v80/falkner18a.html
https://proceedings.mlr.press/v80/falkner18a.html
http://refhub.elsevier.com/S0167-739X(25)00337-1/sb12
http://refhub.elsevier.com/S0167-739X(25)00337-1/sb12
http://refhub.elsevier.com/S0167-739X(25)00337-1/sb12
http://refhub.elsevier.com/S0167-739X(25)00337-1/sb12
http://refhub.elsevier.com/S0167-739X(25)00337-1/sb12
http://refhub.elsevier.com/S0167-739X(25)00337-1/sb12
http://refhub.elsevier.com/S0167-739X(25)00337-1/sb12
http://dx.doi.org/10.1145/3357223.3362719
http://dx.doi.org/10.1145/3447786.3456245
http://dx.doi.org/10.1145/3472883.3486989
http://dx.doi.org/10.1145/3472883.3486989
http://dx.doi.org/10.1145/3472883.3486989
http://jmlr.org/papers/v21/18-223.html
http://jmlr.org/papers/v23/21-0888.html
http://dx.doi.org/10.1145/3292500.3330701
http://dx.doi.org/10.1109/HiPC.2018.00014
http://dx.doi.org/10.1145/3295500.3356202
http://dx.doi.org/10.1109/BigData50022.2020.9378060
http://dx.doi.org/10.1109/BigData50022.2020.9378060
http://dx.doi.org/10.1109/BigData50022.2020.9378060
http://dx.doi.org/10.1016/j.future.2024.05.020
http://dx.doi.org/10.1016/j.future.2024.05.020
http://dx.doi.org/10.1016/j.future.2024.05.020
http://dx.doi.org/10.1007/978-3-031-32041-5_6
http://arxiv.org/abs/1711.09846
http://dx.doi.org/10.14778/3415478.3415530
http://dx.doi.org/10.48550/ARXIV.1706.02677
http://arxiv.org/abs/1706.02677
http://dx.doi.org/10.1162/neco.1997.9.1.1
http://dx.doi.org/10.48550/arXiv.1609.04836
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1807.05118
http://arxiv.org/abs/1807.05118
http://arxiv.org/abs/1807.05118
http://arxiv.org/abs/1812.06162
https://www.usenix.org/conference/osdi21/presentation/qiao
https://www.usenix.org/conference/osdi21/presentation/qiao
https://www.usenix.org/conference/osdi21/presentation/qiao
http://dx.doi.org/10.1109/IGARSS46834.2022.9883257
http://dx.doi.org/10.1109/IGARSS46834.2022.9883257
http://dx.doi.org/10.1109/IGARSS46834.2022.9883257
https://openreview.net/pdf?id=B1Yy1BxCZ
https://openreview.net/pdf?id=Skq89Scxx
https://openreview.net/pdf?id=Skq89Scxx
https://openreview.net/pdf?id=Skq89Scxx
http://arxiv.org/abs/1404.5997
https://proceedings.neurips.cc/paper_files/paper/2022/file/32ac710102f0620d0f28d5d05a44fe08-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/32ac710102f0620d0f28d5d05a44fe08-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/32ac710102f0620d0f28d5d05a44fe08-Paper-Conference.pdf
http://dx.doi.org/10.1145/3624062.3624259
http://jmlr.org/papers/v15/martinezcantin14a.html
http://dx.doi.org/10.1613/jair.1.13643
http://dx.doi.org/10.1109/ICCV.2015.123


M. Aach et al. Future Generation Computer Systems 175 (2026) 108042 
[41] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward 
neural networks, in: Y.W. Teh, M. Titterington (Eds.), Proceedings of the 
Thirteenth International Conference on Artificial Intelligence and Statistics, in: 
Proceedings of Machine Learning Research, vol. 9, PMLR, 2010, pp. 249–256, 
URL: https://proceedings.mlr.press/v9/glorot10a.html.

[42] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, 
in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 
2016, pp. 770–778, http://dx.doi.org/10.1109/CVPR.2016.90.

[43] P. Mattson, C. Cheng, G. Diamos, C. Coleman, P. Micikevicius, D. Patterson, H. 
Tang, G.-Y. Wei, P. Bailis, V. Bittorf, D. Brooks, D. Chen, D. Dutta, U. Gupta, 
K. Hazelwood, A. Hock, X. Huang, D. Kang, D. Kanter, N. Kumar, J. Liao, D. 
Narayanan, T. Oguntebi, G. Pekhimenko, L. Pentecost, V. Janapa Reddi, T. Robie, 
T. St John, C.-J. Wu, L. Xu, C. Young, M. Zaharia, MLPerf training benchmark, 
in: I. Dhillon, D. Papailiopoulos, V. Sze (Eds.), Proceedings of Machine Learning 
and Systems, Vol. 2, 2020, pp. 336–349, URL: https://proceedings.mlsys.org/
paper_files/paper/2020/file/411e39b117e885341f25efb8912945f7-Paper.pdf.

[44] Y.-Q. Yang, Y.-X. Guo, J.-Y. Xiong, Y. Liu, H. Pan, P.-S. Wang, X. Tong, B. Guo, 
Swin3D: A pretrained transformer backbone for 3D indoor scene understanding, 
2023, arXiv:2304.06906.
12 
[45] E. Inanc, R. Sarma, M. Aach, A. Lintermann, AI4HPC, 2023, http://dx.doi.org/
10.5281/zenodo.7705417.

[46] E. Inanc, R. Sarma, M. Aach, R. Sedona, A. Lintermann, AI4HPC: Library to train 
AI models on HPC systems using CFD datasets, in: Workshop on Advancing 
Neural Network Training: Computational Efficiency, Scalability, and Resource 
Optimization, WANT@NeurIPS 2023, 2023, URL: https://openreview.net/pdf?
id=zQTa2XdPnP.

[47] Jülich Supercomputing Centre, JURECA: Data centric and booster modules im-
plementing the modular supercomputing architecture at Jülich Supercomputing 
Centre, J. Large- Scale Res. Facil. JLSRF 7 (2021) http://dx.doi.org/10.17815/
jlsrf-7-182.

[48] S. Kesselheim, A. Herten, K. Krajsek, J. Ebert, J. Jitsev, M. Cherti, M. Langguth, 
B. Gong, S. Stadtler, A. Mozaffari, G. Cavallaro, R. Sedona, A. Schug, A. Strube, R. 
Kamath, M.G. Schultz, M. Riedel, T. Lippert, JUWELS booster – a supercomputer 
for large-scale AI research, in: H. Jagode, H. Anzt, H. Ltaief, P. Luszczek 
(Eds.), High Performance Computing, in: LNCS, vol. 12761, Springer, 2021, pp. 
453–468, http://dx.doi.org/10.1007/978-3-030-90539-2_31.

[49] Jülich Supercomputing Centre, JUWELS Cluster and Booster: Exascale Pathfinder 
with Modular Supercomputing Architecture at Juelich Supercomputing Centre, J. 
Large- Scale Res. Facil. JLSRF 7 (2021) http://dx.doi.org/10.17815/jlsrf-7-183.

https://proceedings.mlr.press/v9/glorot10a.html
http://dx.doi.org/10.1109/CVPR.2016.90
https://proceedings.mlsys.org/paper_files/paper/2020/file/411e39b117e885341f25efb8912945f7-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/411e39b117e885341f25efb8912945f7-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/411e39b117e885341f25efb8912945f7-Paper.pdf
http://arxiv.org/abs/2304.06906
http://dx.doi.org/10.5281/zenodo.7705417
http://dx.doi.org/10.5281/zenodo.7705417
http://dx.doi.org/10.5281/zenodo.7705417
https://openreview.net/pdf?id=zQTa2XdPnP
https://openreview.net/pdf?id=zQTa2XdPnP
https://openreview.net/pdf?id=zQTa2XdPnP
http://dx.doi.org/10.17815/jlsrf-7-182
http://dx.doi.org/10.17815/jlsrf-7-182
http://dx.doi.org/10.17815/jlsrf-7-182
http://dx.doi.org/10.1007/978-3-030-90539-2_31
http://dx.doi.org/10.17815/jlsrf-7-183

	Resource-adaptive successive doubling for hyperparameter optimization with large datasets on high-performance computing systems
	Introduction
	Related Work
	Successive Halving
	Resource-Adaptive Schedulers
	Other HPO Algorithms and Libraries
	Data-Parallel Deep Learning

	Resource-Adaptive Successive Doubling Algorithm
	Algorithm Design and Implementation
	Large Batch Training
	Performance Optimization
	Compatibility with existing HPO tools
	Dependency on Hardware Setup

	Application Cases
	Computer Vision
	Additive Manufacturing
	Computational Fluid Dynamics

	Results
	Supercomputers
	Scaling Performance
	Speed-Ups and Accuracy
	Performance at 1024 GPU scale
	Ablation Studies
	Impact of Reduction and Scaling Factors
	Comparison to Bayesian Optimization (BO)


	Summary and Outlook
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix. RASDA GitHub repository
	Data availability
	References


