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ARTICLE INFO ABSTRACT
Keywords: The accuracy of Machine Learning (ML) models is highly dependent on the hyperparameters that have to be
Hyperparameter optimization chosen by the user before the training. However, finding the optimal set of hyperparameters is a complex
High-performance computing process, as many different parameter combinations need to be evaluated, and obtaining the accuracy of each

Distributed deep learning

. ; combination usually requires a full training run. It is therefore of great interest to reduce the computational
Machine learning

runtime of this process. On High-Performance Computing (HPC) systems, several configurations can be
evaluated in parallel to speed up this Hyperparameter Optimization (HPO). State-of-the-art HPO methods
follow a bandit-based approach and build on top of successive halving, where the final performance of a
combination is estimated based on a lower than fully trained fidelity performance metric and more promising
combinations are assigned more resources over time. Frequently, the number of epochs is treated as a resource,
letting more promising combinations train longer. Another option is to use the number of workers as a resource
and directly allocate more workers to more promising configurations via data-parallel training. This article
proposes a novel Resource-Adaptive Successive Doubling Algorithm (RASDA), which combines a resource-
adaptive successive doubling scheme with the plain Asynchronous Successive Halving Algorithm (ASHA).
Scalability of this approach is shown on up to 1,024 Graphics Processing Units (GPUs) on modern HPC
systems. It is applied to different types of Neural Networks (NNs) and trained on large datasets from the
Computer Vision (CV), Computational Fluid Dynamics (CFD), and Additive Manufacturing (AM) domains,
where performing more than one full training run is usually infeasible. Empirical results show that RASDA
outperforms ASHA by a factor of up to 1.9 with respect to the runtime. At the same time, the solution quality
of final ASHA models is maintained or even surpassed by the implicit batch size scheduling of RASDA. With
RASDA, systematic HPO is applied to a terabyte-scale scientific dataset for the first time in the literature,
enabling efficient optimization of complex models on massive scientific data.

1. Introduction challenging due to often high-dimensional search spaces. Furthermore,
the performance of a sample from the search space can only be evalu-

In recent years, the amount of openly available data has drastically ated with a high degree of confidence after a full model training run.
increased. This includes datasets from different scientific fields, such In the case of deep NNs trained on large datasets, this can become a
as CV [1], Earth Observation (EO) [2], High-Energy Physics (HEP) [3], major hurdle, even with extensive computing resources. Additionally,
AM [4], or CFD [5]. To analyze these data efficiently and gain novel in- the search space is often diverse in nature. For example, the search
sights based on hidden correlations, the use of Deep Learning (DL) tech- ~ Space could be comprised of the learning rate, an optimizer-related
niques and NNs has become essential due to their ability to automat- parameter represented as floating point number, and the number of
ically extract complex patterns. As the prediction quality of these NN layers, an architectural parameter represented as an integer number

I > 0. Categorical values, such as “type of optimizer” or “type of layer”
are also possible. This makes the application of classical, gradient-based
optimization methods infeasible. Hyperparameters also change under
different models and datasets, making the generalization difficult to

models is highly dependent on the so-called hyperparameters, which
are frequently related to, e.g., the NN architecture or the optimizer,
systematic HPO has become a crucial ingredient of ML workflows [6].
However, this search for optimal combinations of hyperparameters is
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assess. One of the state-of-the-art HPO methods is the ASHA [7]. It
randomly samples multiple combinations, evaluates their performance
with a lower training budget and then - after comparing their per-
formance — terminates under-performing trials early on. To reduce
the time to solution, ASHA is frequently executed in parallel, where
multiple NN configurations (trials) are evaluated at the same time.

Modern HPC systems offer a natural setting for running this kind
of workload. They feature accelerators, such as GPUs, that are ideally
suited for efficient NN trainings (fast computation). Furthermore, these
accelerators are connected by an optimized communication network
that enables fast inter-node communication. While current distributed
HPO methods, such as ASHA, leverage the fast computation capabil-
ities to train different hyperparameter candidates, the communication
requirements are usually modest and limited to the exchange of the
value of a certain metric, e.g., the current loss on the validation set for
the comparison of the performance between trials.

This work introduces a novel method, the RASDA, that leverages
both HPC features to perform HPO efficiently at scale. It combines two
levels of parallelism: (i) on the HPO level, different trials are run in par-
allel and (ii) on the level of each trial run, the NN training is accelerated
with data-parallel training. The latter splits the datasets onto multiple
GPUs and performs gradient synchronization after each training step.
As these gradients are typically large, they require high-bandwidth
communication. RASDA then leverages the successive doubling prin-
ciple, which progressively allocates more resources to more promising
hyperparameter combinations, treating the amount of GPUs that are
used for data-parallel training as resources (performing a doubling in
space). In contrast, other successive halving techniques, such as the
plain ASHA, treat the number of epochs during training of a model as
resources and thus perform only halving in time, see Fig. 1.

The developed method is suitable for problems that involve large
scientific datasets, where due to long training times, even with HPC
resources it is not feasible to train more than the initially sampled
hyperparameter configurations and users are interested in getting the
best possible, fully-trained model in the shortest amount of time. There-
fore, this study performs an extensive evaluation of RASDA on dif-
ferent datasets from the CV, CFD, and AM domains, which are up
to 8.3 Terrabyte (TB) in size, to prove its capability to deal with
large datasets. These datasets are used to tune the hyperparameters of
different types of NNs, namely a Convolutional Neural Network (CNN),
an autoencoder and a transformer. RASDA is also benchmarked against
the current state-of-the-art successive halving HPO method ASHA. The
new RASDA code is openly available on GitHub' for the community,
see Table A.8 for an overview of the repository.

In summary, the key contributions of RASDA are:

» Combination of successive halving in space with successive dou-
bling in time, allocating more GPUs to more promising trials.

+ Reduces the runtime of more promising hyperparameter trials by
leveraging a higher degree of parallelism in data-parallel training

» Leverages the inherent features of HPC systems, fast computation
for the training, and fast communication for exchange of gradients
during distributed training

* Outperforms the plain ASHA method in runtime and model per-
formance across different domains and on datasets up to 8.3
TB.

This article is structured as follows. Section 2 summarizes the
related work and highlights the differences to this work. The main
details of RASDA are presented in Section 3. The application cases are
explained in Section 4, followed by a presentation and discussion of the
empirical results of the algorithm in Section 5. Finally, a summary and
outlook are provided in Section 6.

1 RASDA source: https://github.com/olympiquemarcel/rasda.
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Fig. 1. Comparison of successive halving in time (top) and halving in time combined
with doubling in space (bottom). Each line corresponds to the learning curve of a single
HPO combination.

2. Related work

In ML, the performance of a certain model measured by a specific
metric, such as the validation error, can be represented by the function
f : X - R where X denotes the space of possible hyperparameter
combinations. The primary goal of HPO is to minimize the objective
function f by identifying a hyperparameter configuration x* € X
such that x* € argmin,y f(x). Evaluations of the objective function
are costly because they typically involve fully training the model for
each configuration. To optimize this workflow, several approaches
exist. These are either based on approximating f(x) by a lower fi-
delity estimate, e.g., by the performance after a few training epochs
or a model trained on a fraction of the data, or on choosing better
hyperparameter configurations to evaluate, e.g., using BO. This section
summarizes these approaches, i.e. Section 2.1 describes the successive
halving method, Sections 2.2 and 2.3 summarize resource-adaptive as
well as other HPO algorithms and Section 2.4 introduces the concept
of data-parallel training.

2.1. Successive halving

Successive halving is a variant of Random Search [8], which uses
the fact that most ML algorithms are iterative in nature. Intermediate
performance results are thus accessible long before the algorithm is
fully trained. The problem of finding optimal hyperparameters in a vast
search space can then be framed in the context of a multi-armed bandit
problem, where each arm represents a hyperparameter combination,
and pulling an arm corresponds to training the combination for some
iterations [9]. The goal is to identify the arm that yields the highest
reward with the lowest budget possible. To do so in an efficient way,
successive halving uniformly allocates an initial budget B to n,,,,, arms
and evaluates their performance after a few iterations at a milestone
with budget B/n It then eliminates the worst-performing half of the

arms*
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arms and promotes the most promising-performing arms by continuing
to pull them. Each of these successive halving steps is referred to as
a rung. When following this procedure for a few steps from rung to
rung, only one arm, i.e., the one with the best performance, remains at
the end. Hyperband (HB) [10] extends this concept by iterating over
different numbers of initial arms n,,,,, (also referred to as brackets) to
evaluate.

However, when performing HPO at a larger scale, these methods
are sensitive to so-called stragglers. To determine the combinations
belonging to the under- and top-performing half, the performance
measurement for all combinations needs to be available, which means
that faster trials need to wait for the slower ones. ASHA addresses
this scalability problem by deciding on a rolling basis which trials are
worth continuing. When two trials have finished their initial number
of iterations, the trial with the better performance is promoted. At the
same time, the other trial is paused until the performance of the next
completed trial can be juxtaposed. In contrast to HB, ASHA is mostly
performed with only a single bracket, and was evaluated on up to 500
GPUs in [7].

Another possibility of finding a minimum of the objective function
f is to use black-box optimization methods such as BO. The idea
behind BO is to use a probabilistic model of f that is based on data
points observed in the past. In the case of HPO, this corresponds
to finding new promising hyperparameter combinations based on the
performance of past combinations. The BOHB algorithm [11] combines
the BO process with HB for scheduling. To this aim, HB is used to
choose the number of hyperparameter configurations and their assigned
budget, while BO is used to choose the hyperparameters by deploying
a tree parzen estimator [12].

The mentioned methods have in common that they focus only on
identifying the most promising arm and delivering that hyperparameter
combination as a result at the end of a run. In contrast, RASDA also
ensures the full training of the best combination to yield a complete
model.

2.2. Resource-adaptive schedulers

Most of the existing successive halving-based HPO schedulers treat
the number of epochs or training time as resources (also known as
fidelity in the literature). It is, however, also possible to treat the spatial
amount of computational resources, e.g., the number of GPU, used
for training a model as a fidelity. A low-fidelity measurement then
corresponds to the performance of a NN trained with a small number
of devices. The most relevant existing HPO schedulers that focus on
this computational resource-adaptive scheduling are presented in the
following.

HyperSched [13] introduces a scheduler to dynamically allocate re-
sources in time and space to the best-performing hyperparameter trials.
It thereby not only identifies the most promising model but also trains it
— ideally fully - by a fixed deadline. The main novelty of the algorithm
is its deadline awareness, which means that it schedules fewer new
trials as it approaches the deadline. This way, the exploration of new
configurations is stopped in favor of deeper exploitation of the running
trials. HyperSched is evaluated in [13] on different CV benchmarking
datasets on up to 32 GPUs on Cloud computing instances.

Rubberband [14] extends HyperSched by leveraging the elasticity
of the Cloud for the task of scheduling HPO workloads. It takes into
account not only the performance of a combination but also the finan-
cial costs of a GPU hour, with the goal of minimizing the costs of an
HPO job. Based on the idea of diminishing returns when scaling the
training of a single model, the algorithm de-allocates resources (and
thus saves costs) from less-promising trials, once a promising trial has
been identified. It also creates a resource allocation plan a priori the
run to optimize the performance of the single trials that are trained via
distributed DL. The resource allocation plan is initialized with an initial
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burn-in period during which training latencies and scaling performance
of trials are measured.

Sequential Elimination with Elastic Resources (SEER) [15] further
takes advantage of the elasticity in the cloud by adaptively allocating
and de-allocating compute resources during the HPO run. At the same
time, it focuses on maximizing the accuracy of trials, in combina-
tion with minimizing the total financial cost. Therefore, it limits the
amount of workers allocated to the top trials once sub-linear scaling
performance sets in.

Both Rubberband and SEER rely heavily on the adaptive allocation
and de-allocation of GPU instances, which is possible in an elastic cloud
setting but not on HPC systems, where the amount of GPUs allocated
to the overall HPO job is usually static. HyperSched, meanwhile, fo-
cuses on maximizing the performance by the deadline. In contrast, the
proposed RASDA method aims to deliver the best-possible result in the
shortest amount of time.

2.3. Other HPO algorithms and libraries

Many other algorithms and libraries for performing HPO exist.
These include BO-based libraries such as Dragonfly [16] and SMAC
[171, allowing the user to select different surrogate models and acqui-
sition functions. Optuna [18] also relies on BO and provides automated
tracking and visualization of trials. Since parallel computing resources
have become increasingly available in recent years, several algorithms
have emphasized large-scale, distributed HPO: DeepHyper [19] focuses
on performing asynchronous BO on HPC systems and has been applied
to several scientific use cases [20-22]. Distributed evolutionary opti-
mization can be performed with Propulate [23] and Population Based
Training (PBT) [24].

While most of these libraries support multi-fidelity HPO, none of
them so far supports performing resource-adaptive scheduling of trials,
which is, however, supported by RASDA.

2.4. Data-parallel deep learning

Data-parallel training is a technique to reduce the runtime of the
training of DL models on large datasets by using multiple devices, such
as GPUs. In data-parallel training, the training dataset D is divided
among the number of workers N, where each worker is assigned
an identical copy of the model to train on a distinct subset of the
data D; U D, U --- U Dy. Specifically, each worker i = 1... N runs
one model forward and backward pass with a predefined number of
samples, the local batch size B.S),,;, of its subset of data to compute
its local gradients Aw; with respect to the model parameters w. After
the backward pass, these local gradients are aggregated and averaged
across all workers by

N
1
Aw = N ;Awi, (€]

The averaged global gradient is then used to update the model
parameters on all workers every BS,;, = BSj,., - N samples [25].
To remain computationally efficient, each worker needs a sufficient
amount of data to run the training, thus B.S),, needs to be large.
At the same time, BS,,,, increases linearly with N. When BS,;.,
becomes too large, it can impact the generalization performance for
two reasons. First, the number of optimizer updates per epoch de-
creases, as an update is performed every BS,,,;, samples. This can be
addressed to some extent by scaling the learning rate with the number
of devices [26]. This approach is, however, infeasible for an extremely
large B.S,o4q, since in such a case also the learning rate becomes too
large. Second, Stochastic Gradient Descent (SGD) with large batch sizes
tends to converge to sharp minima [27] which does not generalize well,
see [28] for more details.
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Fig. 2. Comparison of (plain) ASHA, performing successive halving only in the time domain, and RASDA, performing successive halving in the time and successive doubling in the
space domain at the same time on an GPU cluster. In the RASDA case, when a trial is terminated, its workers are allocated to the more promising trials to increase the parallelism
of the data-parallel training. Black arrows indicate communication of gradients between GPUs.

Algorithm 1 Resource Adaptive Successive Doubling Method

Input: trial_result, base_resources, sf, milestones

1: if trial_result["training_iteration"] € milestones then
2 current_rung < milestones.index(trial_result["training_iteration'])

3 new_resources « base_resources x sfcurrent_rung
4 return new_resources

5: else

6 return None

7: end if

3. Resource-adaptive successive doubling algorithm

This section presents details on RASDA in Section 3.1 and provides
an explanation on how issues with large batch size training, cf. Sec-
tion 2.4, are addressed in Section 3.2. The performance optimizations
are presented in Section 3.3, while in Section 3.4 and Section 3.5
the compatibility of RASDA with other tools and its dependcy on the
hardware setup are summarized.

3.1. Algorithm design and implementation

The main idea of RASDA is to combine a successive halving step in
the time domain, i.e., train more promising configurations for longer,
and a successive doubling step in the spatial domain, i.e., allocate more
workers to more promising configurations. This way, when reaching
a rung milestone, the worst-performing trials are terminated (halving
in time) and the free workers are allocated to the top-performing
trials (doubling in space), see Fig. 2. The additional workers are then
used to increase the parallelism of the data-parallel training of the
configuration, which leads to faster training times.

For the re-allocation of workers, a second successive doubling rou-
tine in addition to the successive halving routine of ASHA is used
(the resource allocation part is described in Alg. 1): All trials start
out with an initial number of workers (base_resources). When a trial
reports a new trial_result, it is first checked if the current training_
iteration, e.g., the current epoch, corresponds to one of the rung
milestones. At every rung milestone, the (plain) ASHA scheduler
then reduces the number of running trials by the reduction factor
rf. The resources for all trials that are allowed to continue are then
increased with the scaling factor sf by the RASDA scheduler, yielding
the new_resources for the trial (following Alg. 1). If the reduction and
scaling factors are equal, i.e. rf = sf, all workers are continuously
allocated to a trial. In practice, however, some trials do run faster than
others. The advantage of the ASHA and RASDA scheduler is that they

both perform asynchronous halving and doubling, i.e., top-performing
trials are promoted to the next rung even if not all trials in the
current rung have reached their milestones. This reduces idling times
between halving steps. It should be noted that due to this asynchronous
execution, the percentage of trials terminated at each milestone can
be smaller than rf. As the total number of workers in the system is
a constant, the trials that are allowed to continue might need to wait
until their new resource requirements are met.

At these rung milestones, two processes occur: the (plain) ASHA
scheduler reduces the number of running trials by the reduction factor
rf, while Alg. 1 handles the reallocation of GPU resources among the
remaining trials.

The total number of rungs and their corresponding milestones in the
RASDA scheduler are calculated based on the minimum and maximum
iterations min_t and max _t, along with the scaling factor sf, as

10 ( max _t )
] min _¢

log(sf) | 2

num_rungs =

rung milestones = min_t - stk, 3

with k = 0,...,num_rungs. This ensures a geometric progression of the
milestones, as described for ASHA by Li et al. [7].

The algorithm is implemented with Ray Tune [29], an open-source
library for performing distributed HPO. Ray Tune orchestrates the op-
timization process by launching a single head node and several worker
nodes on an HPC cluster. The head node then connects to the worker
nodes and starts the trials. During training, the worker nodes report
their current status including performance metrics to the head node
that makes scheduling decisions, such as termination or continuation
of new trials.

Ray Tune already features implementations of several successive
halving methods. The implementation of RASDA therefore relies on
the implementation of ASHA that exists already inside of Ray Tune



M. Aach et al.

for performing the time-wise successive halving. For the spatial suc-
cessive doubling, RASDA makes use of the ResourceChangingScheduler
interface,? enabling the modification of resource requirements for trials.
At each milestone, the trial is saved, including the current weights of
the model. If the decision is made to continue the training, the trial
is relaunched with the new resource requirements. It should be noted,
that the ASHA implementation of Ray Tune has some minor differences
to the original algorithm in [7]. However, empirical evidence shows
that these differences do not impact performance.

The data-parallel training part is handled by the PyTorch-DDP
library [25], which uses the NVIDIA Collective Communications Library
(NCCL) backend® for communication and gradient synchronization.

3.2. Large batch training

Recall from Section 2.4 that scaling the data-parallel training to a
large number of devices and increasing BS,,,, can impact the gener-
alization performance of models. The following provides an intuitive
explanation of how this issue is addressed by the RASDA scheduler.

McCandlish et al. [30] empirically studied large batch training for
various models: they introduce the Gradient Noise Scale (GNS) metric,
which serves as a noise-to-signal measure of the training progress. In
theory, if the true gradient G,,,, from performing full-batch Gradient
Descent without the stochastic component would be available, it would
be possible to compute a simple version of the GNS by

GNSsimp[e = LZ‘)Q’ (4)
|Gtrue|

where X is the per-data-sample covariance matrix of G,,,,. Essentially,
the nominator measures the noise of the gradient, while the denomina-
tor measures its magnitude. As the DL model converges, the gradient
decreases in size, which results in an increase of the GNS over training
time. McCandlish et al. use an approximation to compute the GNS
based on the estimated stochastic gradient G,,, and confirm that the
GNS indeed increases over time.

Based on the GNS, Qiao et al. [31] introduce the concept of “statis-
tical efficiency” of the DL training, measuring the amount of training
progress made per data sample processed in a batch. The key insight is
that when the GNS is low, there is no benefit for the learning progress
in adding more data samples to the batch (thus increasing B.S,,,), as
the stochastic gradient G,,, is a precise approximation of G,,,, already.
However, when the GNS is high, adding more data samples to the batch
reduces the noise and leads to a better gradient approximation. As the
GNS starts out small and increases over time, this justifies the usage
of larger batch sizes during the later part of training. This approach
has also been used successfully for HPO and scheduling tasks in the
past [31,32].

Additionally, Smith et al. [33] find that increasing B.S,;,,, over time
has a similar effect as decaying in the learning rate, which is common
practice in DL nowadays [34]. Based on these findings, the following
two insights can be derived:

* Training with a small BS,,,,, generally helps generalization and
is computationally efficient at the beginning of training, in terms
of the training progress per processed data sample.

* Increasing BS,,,, over time and using a large BS,,, as the

model is converging is computationally efficient as well.

This aligns well with the scheduling of the RASDA algorithm. In
the beginning, the trials train with a small BS,,,,, i.e., the number
of workers allocated for the data-parallel training is small. As time

progresses, BS,,,, increases with each resource doubling step, as

2 ResourceChangingScheduler (version 2.8.0): https://docs.ray.io/en/
latest/tune/api/doc/ray.tune.schedulers.ResourceChangingScheduler.html.
3 NCCL backend: https://github.com/NVIDIA/nccl.
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more and more workers are allocated to the data-parallel training. The
evaluation in Section 5 shows that by leveraging this approach, the
generalization capabilities of the final models match or exceed those
of models that are continuously trained with a small BS,,;,-

Another crucial point is the correct scaling of the learning rate
with the batch size. In the evaluation in Section 5, the learning rate
is scaled linearly with the number of workers, i.e., up to a factor of
8%, when using SGD [35]. Furthermore, it follows a square-root scaling
rule when using Adaptive Moment Estimation (ADAM) [36]. In the case
of re-scaling, the learning rate is not immediately scaled to a larger
value. Instead, there is a warm-up over one or two epochs. This re-
scaling parameter is included as a hyperparameter in the search space,
see Table 1. Thereby, the HPO run automatically optimizes towards
learning stability.

3.3. Performance optimization

To ensure efficient performance, several additional optimizations
are made to the trials in the HPO loop. This includes selecting the
BS,,. sufficiently large such that it fills the GPU memory in addition
to the model for each of the applications. As the training datasets have
to be loaded by each trial in parallel when performing HPO, they are
loaded into shared memory when they fit in size. Training datasets that
do not fit into shared memory are stored on a partition of the file system
with high bandwidth to avoid bottlenecks. For data loading, the native
PyTorch data loader as well as the NVIDIA DALI library* are used.

A preliminary study determined that saving the model weights into
a checkpoint too often can lead to bottlenecks [37]. Therefore, the
checkpoint frequency is reduced to every five epochs and the rung
milestones of the ASHA and RASDA scheduler are adjusted accordingly.
Ray Tune needs an initial start-up time to launch the head node and
all connected worker nodes. As this is the same for ASHA and RASDA,
these timings are excluded from the measurements.

3.4. Compatibility with existing HPO tools

As RASDA functions as a pure scheduling tool, it can be integrated
with various HPO and AutoML frameworks. Since it is already incor-
porated into the Ray Tune framework via the scheduler interface, it
can be seamlessly used within workflows that leverage the scheduling
infrastructure of Ray Tune. This includes BO tools such as BOHB [11],
Optuna [18], and BayesOpt [38], as well as evolutionary optimization
frameworks like HEBO [39]. In such cases, the Bayesian or evolutionary
algorithm proposes new hyperparameter candidates to sample from the
search space, while RASDAs time-wise successive halving determines
which trials to terminate at different points in time. Concurrently, its
space-wise successive doubling allocates additional GPU resources to
the trials selected to continue.

3.5. Dependency on hardware setup

As the main idea of RASDA is to perform successive doubling in
the spatial domain, the scheduler operates most efficiently on HPC
systems where the number of GPUs per node, the total number of
allocated nodes, and the number of concurrent trials follow a power-
of-two configuration. This setup ensures that GPUs resources can be
reassigned seamlessly across rung milestones, as illustrated in Fig. 2.
However, such configurations may not always be available in practice.
In scenarios where the number of GPUs is not a power of two or where
the number of trials exceeds the number of available GPUs, RASDA
relies on the underlying Ray Tune framework to manage resource
scheduling and queuing. When more trials are submitted than there are
GPUs available, not all trials can be launched simultaneously. In this

4 DALL https://developer.nvidia.com/dali.
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Table 1

Search space for the experiments, comprised of several optimizer-related and architec-
tural parameters. Superscripts indicate which hyperparameters are used as search space
for which applications: CV, CFD, AM. The ‘“re-scaling warm-up” parameter handles the
gradual increase of the learning rate when the number of devices and with it BS,,
is increased.

Hyperparameter Type Range
Learning rate®V> CFD, AM Float log[le-5, 1]
Weight decay®: CFD, AM Float 1log(0, le—1]
Initial warm-up®> CFP: AM Int [1,2,3,4,5]
Optimizer®V> D, AM Cat [“sgd”, “adam”]
Layer initialization®"> CFP Cat [“kaiming” [[401],
“xavier”’[41]]
Activation function®V: CFP Cat [“ReLU”,
“LeakyReLU”,
“SELU”, “Tanh”,
“Sigmoid”]
Convolution kernel size€V: CFD Int [5,7,9]
Re-scaling warm-up®™® AM Int [1,2]
Patch sizeM Int [2, 4]
Depth®M Int 1, 2, 4
Number of attention heads*M Int [3, 6, 12, 24]
MLP ratioM Float 1., 2, 3., 4.]

case, RASDA proceeds with its successive doubling routine for the first
batch of trials that are scheduled. Remaining trials are queued and ex-
ecuted as resources become available. At the milestones, trials selected
to continue are paused if their requested GPU allocation cannot be
satisfied immediately, and they are resumed once sufficient resources
are freed by completed or terminated trials. Although this queuing
may introduce some latency, the promoted trials benefit from increased
parallelism once resumed, resulting in significantly faster training.
The benefit becomes especially pronounced in higher rungs, where
larger resource allocations substantially reduce the training time per
epoch. As a result, RASDA is still expected to deliver well-performing
hyperparameter candidates faster than plain ASHA. Similarly, in cases
where the total number of GPUs is not a power of two, the successive
doubling scheme can still be applied, although some adaptation is
required. Specifically, the values of sf, rf, min_t, and max _t should be
chosen to ensure that the maximum number of GPUs allocated per trial
in the final rung does not exceed the available resources. It is generally
advisable to avoid resource fragmentation across nodes, as splitting the
GPUs on a node between multiple trials may reduce the efficiency of
data-parallel training.

4. Application cases

To assess the proposed RASDA scheduler, its performance is eval-
uated across a range of different tasks from the CV, CFD, and AM
domain on seperate training, validation and test dataset splits to avoid
overfitting. The different cases feature various models with different
hyperparameters to optimize as well as training datasets of different
sizes. The application domains and the set-up of these tasks is described
in the following.

4.1. Computer vision

For the CV domain, the hyperparameters of a ResNet50 [42] trained
on the ImageNet dataset [1] are optimized, as this is still one of
the most important reference benchmarks [43]. The ImageNet dataset
contains 1,281,167 training images and 50,000 validation images di-
vided into 1000 object classes. In TFRecord file format, the dataset is
approximately 146 Gigabyte (GB) in size.

The ResNet follows a basic CNN architecture with multiple residual
connections between layers. The HPO search space for the ResNet
includes several architectural hyperparameters, e.g., the type of acti-
vation functions or size of the input convolution kernel, as well as
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optimizer-related parameters, such as the learning rate or weight decay,
see Table 1 for an exhaustive list.

All models are trained for min_t = 5 to max ¢ = 40 epochs and a
reduction and scaling factor sf = rf = 2 is chosen for the schedulers.
Following Eq. (3), this results in rung milestones at epochs 5, 10, 20, and
40.

As classification accuracy score, the percentages of the correctly
classified training, validation, and test images are computed.

4.2. Additive manufacturing

The AM dataset is taken from the RAISE-LPBF benchmarking dataset
[4], which includes a selection of high-speed video recordings at 20,000
frames per second of a laser powder bed fusion processes for stainless
steel. The laser power and speed parameters are systematically varied.
The goal is to reconstruct the power and speed of the laser from this
video input. By comparing the predicted laser parameters with the
pre-set parameters of the machine producing the laser, anomalies in
the printing process can be detected faster, leading to more efficient
quality control. The base ML model used for this task is a Swin-
Transformer [44], with the HPO search space consisting of multiple,
Transformer-specific architectural and optimizer-related parameters,
such as the number of attention heads, see Table 1. The model is trained
on the C027 cylinder with a 80/20 split for training and validation and
is approximately 60 GB in size. It is evaluated on the C028 cylinder
for testing purposes. The Mean-Squared Error (MSE) between predicted
and actual laser power and speed is computed to assess the accuracy
of the SwinTransformer. All models are trained for min_¢t = 5 to max _t
= 20 epochs and a reduction and scaling factor sf = rf = 2 is chosen
for the schedulers. Following Eq. (3), this results in rung milestones at
epochs 5,10, and 20.

4.3. Computational fluid dynamics

The CFD dataset contains actuated turbulent boundary layer flow
data, generated from a simulation [5]. The CFD dataset is stored in
HDFS5 file format and comprises several widths. In this study, widths of
1000, 1200, and 1600 are used as training dataset (approximately 4.8 TB
in size). Width of 1800 and 3000 are used as validation and test datasets
(approximately 3.5 TB in size) to assess extrapolation performance.
Altogether, the dataset is approximately 8.3 TB in size.

A convolutional autoencoder, selected from the AI4HPC reposi-
tory [45,46], is employed for flow reconstruction. The autoencoder
comprises an encoder, a decoder, and a latent space representing a
compressed, lower-dimensional version of the input. Both the encoder
and decoder include four convolutional layers. In the encoder, the
initial two layers perform down-sampling to compress the data, while
in the decoder, they perform up-sampling to decompress the data in
the latent space. The remaining layers perform regular convolution.
The HPO search space consists of the type of activation function as an
architectural parameter and several optimizer-related ones, see Table 1.

The autoencoders are trained for min_t = 5 to max _t = 40 epochs and
a reduction and scaling factor sf = rf =2 is chosen for the schedulers.
Following Eq. (3), this results in rung milestones at epochs 5, 10,20, and
40.

The MSE between the input and the reconstructed output flow field
is computed and used to assess the accuracy of the autoencoders. As
a further measure of solution quality, also the relative reconstruction
error is computed on the test set.

All experiments use reduction and scaling factors sf = rf = 2,
as this provides a suitable trade-off between terminating unpromising
trials and scaling up GPU resources. Choosing a scaling factor that is too
large can lead to learning instabilities at the rung milestones, due to the
abrupt increase in the number of GPUs allocated. Similarly, selecting a
reduction factor that is too large may result in prematurely terminating
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trials that could have shown strong performance in later training stages.
The value min_t = 5 is selected to ensure sufficient initial training
and to avoid interference with the learning rate warm-up phase, which
can last up to five epochs (see Table 1). Terminating trials during this
period could result in inaccurate early stopping decisions. The values
max _t = 20 and max ¢t = 40 are chosen to provide adequate training
time for convergence, while also considering computational resource
constraints.

5. Results

This section presents the experimental results of running the pro-
posed algorithm on two supercomputer systems, which are introduced
in Section 5.1. Section 5.2 focuses on the scaling performance of the
RASDA algorithm on up to 1024 GPUs, while Section 5.3 compares
the RASDA against the plain ASHA scheduler without any resource
adaptation. Section 5.4 reports the performance of RASDA at the large
scale, and in Section 5.5 different ablation experiments are presented.

5.1. Supercomputers

The two supercomputer modules used for the experiments in this
study are both located at the Jiilich Supercomputing Centre.

The first system is the JURECA-DC-GPU module [47] consisting of
a total of 192 accelerated compute nodes. Each node is equipped with
two AMD EPYC 7742 CPUs with 128 cores clocked at 2.25 GHz and four
NVIDIA A100 GPUs, each with 40 GB high-bandwidth memory. The
second HPC system is the JUWELS BOOSTER module [48] consisting
of a total of 936 compute nodes. Each node is equipped with two
AMD EPYC Rome 7402 CPUs with 48 cores clocked at 2.8 GHz, and
four NVIDIA A100 GPU with 40 GB high-bandwidth memory. The
main difference between the two systems is the number of InfiniBand
interconnects: the JURECA-DC-GPU system features only two per node,
while the JUWELS BOOSTER has four per node and therefore a higher
network transmission bandwidth.

As of June 2024, both supercomputers are among the top 10%
most energy-efficient supercomputers in the world, according to the
GREENS500 list.®

5.2. Scaling performance

To evaluate the scalability of the RASDA algorithm, two weak
scaling experiments, where the number of HPO configurations to eval-
uate is increased with the number of GPUs, are conducted with a
lower number of training epochs. For this purpose, the CV application
case as a representative benchmark for DL workloads is selected. It
should be noted that while the asynchronous nature of the plain ASHA
algorithm naturally leads to good scalability [7], the goal of this study
is to demonstrate that the additional resource allocation mechanism in
RASDA maintains this favorable scaling behavior.

The first weak scaling experiment considers a smaller scale of 8 to 64
GPUs. The runtime and accuracy of the RASDA algorithm is compared
to the plain ASHA algorithm for training a ResNet50 on the ImageNet
dataset for 20 epochs, see Fig. 3. It can be seen that on all scales
(from 8 to 64 GPUs), the RASDA algorithm achieves consistently lower
runtimes up to a factor of 1.45 faster than its ASHA counterpart while
matching the final test set accuracy in almost all cases. Reduced test
set accuracy is observed only at 8 and, to a lesser extent, 16 GPUs, as
in these small settings the number of hyperparameter configurations
evaluated is low and RASDA cannot yet fully benefit from large batch
size training (see Section 3.2).

The second scaling experiment considers a large scale of 128 to
1024 GPUs, see Fig. 4. The weak scalability of the RASDA algorithm

5 GREENS500: https://top500.0rg/lists/green500/list/2024/06/.
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is evaluated by training a ResNet for six epochs. The results show that
the algorithm maintains a high parallel efficiency of >0.84 on up to
1024 GPUs.

It should be noted that strong scaling experiments that keep the
number of hyperparameter configurations consistent across all scales
are generally infeasible for this type of HPO workload, as evaluating a
large number of configurations on a small number of GPUs would take
too long.

The better scaling performance of RASDA compared to ASHA can
also be observed when examining specific HPC metrics. RASDA con-
sistently achieves higher GPU utilization, as it avoids idling GPUs, see
Fig. 2. RASDA achieves approximately ~80% GPU utilization, compared
to around ~54% for the ASHA case. Since more GPUs are actively
used, this also leads to higher I/0 demand compared to ASHA, where
idle GPUs consume less data. However, because RASDA achieves sig-
nificantly shorter runtimes, it is expected to be more energy-efficient
overall.

5.3. Speed-ups and accuracy

To evaluate the performance of the RASDA algorithm in terms of
speed-up and accuracy and to juxtapose it to the plain ASHA algorithm
considering the application cases, the number of training epochs is
increased within the min_t and max _t range specified in Section 4.
The general results for the three application case, averaged over three
different runs for all application cases, are presented in Tables 2, 3,
and 4. The solution quality over time is presented in Fig. 5, an in-depth
performance analysis of the runtimes per epoch is given in Fig. 6, and
the change of batch size and number of GPUs per trial is depicted in
Fig. 7. The results correspond to an exemplary best-performing trial
from one of the three runs. The following paragraphs provide a more
detailed discussion of these tables and figures.

For the CV application case, a total of 32 hyperparameter combina-
tions are evaluated simultaneously on 64 GPUs on the JURECA-DC-GPU
system, with each parallel trial starting with two GPUs. Compared to
the plain ASHA approach, the RASDA algorithm reduces the overall
average runtime of the HPO process by a factor of ~1.71 from 527 to
308 min, see Table 2. The average solution quality, i.e., the training,
validation, and test set accuracy of the best trial discovered during
the process, slightly outperforms the ones of the plain ASHA. This
indicates that scaling the batch size and the learning rate during the
training process does not impact the learning process in this case.
A closer look at one of the best-performing trials in Fig. 6 reveals
that indeed the average runtime decreases in the RASDA case once
the resource adaptation in space sets in after the first five epochs. As
can be seen in Fig. 7, BS, ., increases from 256 to 2048 during the
training and the number of GPUs from 2 to 16 per trial for the RASDA
case, while both stay constant in the plain ASHA case. The plot of the
validation accuracy over the number of epochs in Fig. 5 confirms that
RASDA slightly outperforms the ASHA approach in terms of solution
quality.

For the AM application case, the HPO process evaluates 16 config-
urations, using a total of 128 GPUs on the JURECA-DC-GPU system.
The trials start out with 8 GPUs each, which increases to 32 GPUs for
the top-performing trials, at the same time increasing BS,,, from
64 to 256. As the models are only trained for a total amount of 20
epochs (due to the long training times of transformer models), only two
resource-doubling steps, i.e., at epoch 5 and epoch 10, take place, see
Fig. 7. Table 3 provides an overview of the results in terms of runtime
and solution quality. In comparison with the plain ASHA algorithm, a
speed-up by a factor of 1.52 is achieved, reducing the required HPO
runtime of the models from 96 to 63 min. On both the validation and
test dataset, the best configuration found by RASDA again outperforms
the one found with the plain ASHA after 20 epochs, as can be seen in
Fig. 5.
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Weak Scalability of RASDA: Accuracy
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Fig. 3. Comparison of ASHA and RASDA for training a ResNet50 model on ImageNet for 20 epochs on different scales on the JURECA-DC-GPU system.
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Fig. 4. Weak scalability of the RASDA algorithm on up to 1024 GPUs on the JUWELS
BOOSTER system, including ideal scalability for comparison.

The CFD application case features the largest dataset used in this
study. The whole HPO process evaluates 16 configurations on 128 GPUs
simultaneously on the JUWELS BOOSTER module. Each trial starts with
8 GPUs, which is increased over time to 64 GPU by the RASDA algo-
rithm. As can be seen from Table 4, the most significant speed-up with a
factor of ~1.9 is achieved in this case, with RASDA reducing the runtime
of the HPO process from 325 to 170 min. In this case, also the average
MSE decreases by a factor of ~1.88. This is likely due to the even
better generalization capabilities caused by increasing the batch size
over time (following the insights explained in Section 3.2). Obviously,
this outperforms just annealing of the learning rate. This observation
is in line with the findings of Smith et al. [33]. RASDA also achieves a
low relative reconstruction error of just 1.15% on the test set.

In general, the most substantial speed-up is established on the
largest dataset from the CFD domain. This is expected, as with a
larger dataset, the benefit of adding more GPUs to the data-parallel
training loop also increases. It is additionally interesting to observe
that the speed-ups can be attained on both the JURECA-DC-GPU and
JUWELS BOOSTER systems, although the latter features twice the
network bandwidth. While RASDA already yields substantial benefits
on JURECA-DC-GPU with its moderate network infrastructure, the dou-
bled network bandwidth of JUWELS BOOSTER further amplifies these
speed-ups, highlighting how the approach particularly profits from fast
interconnects.

Table 2

HPO for the CV application case, trained for 40 epochs on 64 GPUs on the JURECA-
DC-GPU system. Results are averaged over three random seeds. Better results (1 or |
depending on the metric) are underlined.

Metric ASHA RASDA Diff.

Train accuracy 1 0.6976 0.7310 1.05x
Val accuracy 1 0.6728 0.6813 1.01x
Test accuracy 0.6688 0.6766 1.01x
Runtime (in seconds) | 31637 18502 1.71x

Table 3

HPO for the AM application case, trained for 20 epochs on 128 GPUs on the JURECA-
DC-GPU system. Results are averaged over three random seeds. Better results (1 or
| depending on the metric) are underlined. For better comparison the metrics were
recomputed on a per-sample basis after the run.

Metric ASHA RASDA Diff.
Val MSE | 0.0455 0.0404 1.12x
Test MSE | 0.0554 0.0516 1.07x
Runtime (in seconds) | 5784 3803 1.52x

Table 4

HPO for the CFD application case, trained for 40 epochs on 128 GPUs on the JUWELS
BOOSTER module. Results are averaged over three random seeds. Better results (1 or
| depending on the metric) are underlined.

Metric ASHA RASDA Diff.

Val MSE | 528 x 1070 2.81x 10~° 1.88%x
Test MSE | 4.42x 107 2.40x 10°° 1.84x
Test relative error | 0.0185 0.0115 1.61x
Runtime (in seconds) | 19487 10242 1.90x

5.4. Performance at 1024 GPUs scale

While the superiority of RASDA over plain ASHA has been con-
firmed in the previous experiments using 64 and 128 GPUs, a final
RASDA experiment on a 1024 GPU scale is conducted on the JUWELS
BOOSTER system. Again, using the CFD application case, the number
of configurations to be evaluated is increased to 64, with each trial
starting with 16 GPUs. The models are trained for min s = 5 and
max _t = 20 epochs. The HPO run took three hours and resulted in
an improved model with a validation MSE of ~3.63 x 10~7, a test MSE
of ~4.88 x 108 and a relative test error of ~0.0016. Depending on the
metric, this is a 7 to 49 times increase in solution quality, compared to
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CV: Validation Accuracy of Best Trial

AM: Validation Loss (Per-Sample) of Best Trial
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Fig. 5. Exemplary comparison of the performance (in terms of validation accuracy, training loss, and validation loss) of the best configuration found by ASHA and RASDA for the

different application cases.
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Table 5

Large-scale HPO for the CFD application case, evaluating 64 configurations, trained for
a maximum of 20 epochs on 1024 GPUs on the JUWELS BOOSTER module, including
relative improvement to the HPO run on 128 GPUs.

Table 6

Comparison of ASHA and RASDA with sf = rf =4 for the CV application case, trained
for 20 epochs on 64 GPUs on the JURECA-DC-GPU system. Results are averaged over
three random seeds. Better results (1 or | depending on the metric) are underlined.

Metric RASDA - 1024 GPUs vs. 128 GPUs Metric ASHA RASDA Diff.
Val MSE 3.63x 1077 7.74% Train accuracy 1 0.6179 0.6556 1.06x
Test MSE 4.88x 1078 49.22x Val accuracy 1 0.6312 0.6348 1.01x
Test Rel. error 0.0016 7.17x Test accuracy 0.6250 0.6340 1.01x
Runtime (in seconds) | 17830 11157 1.60x
the results of the HPO run on 128 GPUs (see Table 5), which highlights
factors are increased to sf = rf = 4. Since the number of GPU

the potential of large-scale HPO for scientific ML.
5.5. Ablation studies

To evaluate the impact of different parameters on the performance
of the RASDA method, two ablation studies are conducted.

5.5.1. Impact of reduction and scaling factors
All prior experiments use a scaling and reduction factor of sf
2. In this ablation study on the CV application case, these

rf

accelerators per node on HPC systems typically follows a power-of-
two configuration, allocating partial nodes may lead to performance
degradation. To ensure sufficient training time between decision points,
the same values of min ¢t 5 and max _t 20 epochs are retained.
According to Eq. (3), this results in two rung milestones at epochs 5
and 20. As shown in Table 6, RASDA continues to outperform ASHA
under these settings, achieving higher accuracy and a runtime speed-
up of ~1.6x. However, this speed-up is smaller than the improvement
observed with sf = rf = 2 (see Table 2). While a larger scaling factor
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Table 7

Comparison of RASDA and BOHB on the CV application case, trained for 20 epochs
on 64 GPUs on the JURECA-DC-GPU system, evaluating 32 hyperparameter samples.
Results are averaged over three random seeds. Better results (1 or | depending on the
metric) are underlined.

Metric BOHB RASDA Diff.

Train accuracy 1 0.6130 0.6480 1.06x
Val accuracy 1 0.6253 0.6271 1.00x
Test accuracy 1 0.6222 0.6254 1.01x
Runtime (in seconds) | 16825 11815 1.42x

enables more aggressive allocation of GPU resources to promising trials,
it also increases the time between rung milestones due to the geometric
progression (see Eq. (3)). This observation indicates that rf = 2 is a
suitable choice for the RASDA scheduler.

5.5.2. Comparison to Bayesian Optimization (BO)

Although the primary comparison is between RASDA and its closest
scheduling-based counterpart, ASHA, other types of HPO and Neural
Architecture Search (NAS) tools are also relevant. One commonly used
method is Bayesian Optimization (BO). A comparison between RASDA
and the BOHB algorithm on the CV application case is provided below.
To function effectively, BO requires the ability to generate new hyper-
parameter configurations based on past evaluations. As shown in Table
7, when both methods are evaluated with the same number of hyperpa-
rameter samples, RASDA outperforms BOHB in terms of accuracy and
runtime. These results suggest that RASDA achieves a more favorable
trade-off between runtime and solution quality compared to traditional
BO-based approaches.

6. Summary and outlook

RASDA, a novel resource-adaptive successive doubling algorithm
for HPO, suitable for running on HPC systems, was introduced. The
key idea is to not only perform successive halving in time and let
promising configurations train for longer (as is already the case in plain
ASHA), but to combine it with successive doubling in space and allocate
more computational resources to the data-parallel training of promising
configurations.

The RASDA method was evaluated extensively on a standard bench-
marking task in the CV domain as well as on two large datasets (up to
8.3 TB in size) from the CFD and AM domains. The results confirm
that RASDA leads in these cases to speed-ups up to a factor of ~1.9 in
comparison to the ASHA algorithm.

Another property of RASDA is that it progressively scales up the
global batch size of the trials as it adds more GPUs to their training
loops. This helps them to avoid the degradation in solution quality,
which is usually associated with large batch training. Remarkably, the
approach did enhance the solution quality, aligning with literature
findings suggesting that increasing the batch size can match or surpass
the effects of learning rate annealing.

In addition, this study represents the first application of systematic
HPO to a scientific dataset at the TB scale. A comparison of the
application of RASDA on 128 and 1024 GPUs revealed a significant
improvement in model performance. Specifically, the larger-scale ap-
plication identifies a model that is significantly superior in solution
quality. These results demonstrate the scalability and efficiency of
the RASDA method, thus paving the way for the application of HPO
methods on current and future Exascale supercomputers. It should
be noted, however, that RASDA relies heavily on efficient distributed
training. As such, its full benefits are realized primarily on HPC systems
equipped with accelerators such as GPUs. On non-accelerated systems
or in settings with very limited communication bandwidth, potential
inefficiencies may limit performance.
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For future work, the optimal timing for scaling the batch size
(through the addition of more GPUs to the data-parallel training loop)
should be investigated more thoroughly. Furthermore, the impact of
scaling the batch size on various hyperparameters beyond the learning
rate (such as the weight decay values) warrants a deeper exploration.
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Appendix. RASDA GitHub repository

See Table A.8.

Table A.8
Content of the RASDA GitHub Repository.

File Description

startscript.sh Shell script to launch the HPO
process via Ray on an HPC

system

Shell script to set up the Ray
environment on an HPC system

build_ray_env.sh

Main script to configure the
schedulers and launch the HPO
trials

adaptive_ray.py

res_allocate.py Core resource allocation logic for

RASDA

cases/ImagenetTrainLoopDALI.py Script containing the training
logic of the CV application

example

Data availability

All used data is linked in the manuscript.
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