001045037 001__ 1045037
001045037 005__ 20250912110154.0
001045037 0247_ $$2doi$$a10.1073/pnas.2506286122
001045037 0247_ $$2ISSN$$a0027-8424
001045037 0247_ $$2ISSN$$a1091-6490
001045037 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03486
001045037 0247_ $$2pmid$$a40758888
001045037 0247_ $$2WOS$$aWOS:001552219500001
001045037 037__ $$aFZJ-2025-03486
001045037 082__ $$a500
001045037 1001_ $$0P:(DE-Juel1)188440$$aHudina, Esther$$b0$$eCorresponding author
001045037 245__ $$aThe bacterial ESCRT-III PspA rods thin lipid tubules and increase membrane curvature through helix α0 interactions
001045037 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2025
001045037 3367_ $$2DRIVER$$aarticle
001045037 3367_ $$2DataCite$$aOutput Types/Journal article
001045037 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1755163030_31170
001045037 3367_ $$2BibTeX$$aARTICLE
001045037 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001045037 3367_ $$00$$2EndNote$$aJournal Article
001045037 520__ $$aThe phage shock protein A (PspA), a bacterial member of the endosomal sorting complexes required for transport (ESCRT)-III superfamily, forms rod-shaped helical assemblies that internalize membrane tubules. The N-terminal helix α0 of PspA (and other ESCRT-III members) has been suggested to act as a membrane anchor; the detailed mechanism, however, of how it binds to membranes and eventually triggers membrane fusion and/or fission events remains unclear. By solving a total of 15 cryoelectron microscopy (cryo-EM) structures of PspA and a truncation lacking the N-terminal helix α0 in the presence of Escherichia coli polar lipid membranes, we show in molecular detail how PspA interacts with and remodels membranes: Binding of the N-terminal helix α0 in the outer tubular membrane leaflet induces membrane curvature, supporting membrane tubulation by PspA. Detailed molecular dynamics simulations and free energy computations of interactions between the helix α0 and negatively charged membranes suggest a compensating mechanism between helix-membrane interactions and the energy contributions required for membrane bending. The energetic considerations are in line with the membrane structures observed in the cryo-EM images of tubulated membrane vesicles, fragmented vesicles inside tapered PspA rods, and shedded vesicles emerging at the thinner PspA rod ends. Our results provide insights into the molecular determinants and a potential mechanism of vesicular membrane remodeling mediated by a member of the ESCRT-III superfamily.
001045037 536__ $$0G:(DE-HGF)POF4-5352$$a5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001045037 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x1
001045037 536__ $$0G:(GEPRIS)549981499$$aSFB 1551 R16 - Ein kovalenter und nicht-kovalenter makromolekularer Ansatz zur präzisen und schaltbaren Protein-Oligomerisierung: Grundlegende Einblicke und Kontrolle zellulärer Funktionen (R16#) (549981499)$$c549981499$$x2
001045037 588__ $$aDataset connected to DataCite
001045037 7001_ $$0P:(DE-Juel1)187014$$aSchott-Verdugo, Stephan$$b1
001045037 7001_ $$0P:(DE-Juel1)181012$$aJunglas, Benedikt$$b2
001045037 7001_ $$00009-0003-6812-0631$$aKutzner, Mirka$$b3
001045037 7001_ $$0P:(DE-Juel1)131979$$aRitter, Ilona$$b4
001045037 7001_ $$aHellmann, Nadja$$b5
001045037 7001_ $$00000-0003-4517-6387$$aSchneider, Dirk$$b6
001045037 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b7
001045037 7001_ $$0P:(DE-Juel1)173949$$aSachse, Carsten$$b8
001045037 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.2506286122$$gVol. 122, no. 32, p. e2506286122$$n32$$pe2506286122$$tProceedings of the National Academy of Sciences of the United States of America$$v122$$x0027-8424$$y2025
001045037 8564_ $$uhttps://juser.fz-juelich.de/record/1045037/files/Hudina-The-bacterial-escrt-iii-pspa-rods-thin-lipid-tubules.pdf$$yOpenAccess
001045037 8767_ $$8APC600703274$$92025-08-19$$a1200216786$$d2025-08-22$$ePublication charges$$jZahlung erfolgt$$z5495 USD
001045037 909CO $$ooai:juser.fz-juelich.de:1045037$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001045037 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188440$$aForschungszentrum Jülich$$b0$$kFZJ
001045037 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187014$$aForschungszentrum Jülich$$b1$$kFZJ
001045037 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181012$$aForschungszentrum Jülich$$b2$$kFZJ
001045037 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131979$$aForschungszentrum Jülich$$b4$$kFZJ
001045037 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b7$$kFZJ
001045037 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173949$$aForschungszentrum Jülich$$b8$$kFZJ
001045037 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5352$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001045037 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
001045037 9141_ $$y2025
001045037 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001045037 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-10
001045037 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-10
001045037 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-10
001045037 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10
001045037 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-10
001045037 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2022$$d2024-12-10
001045037 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bP NATL ACAD SCI USA : 2022$$d2024-12-10
001045037 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-10
001045037 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-10
001045037 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
001045037 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001045037 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-10
001045037 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2024-12-10
001045037 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-10$$wger
001045037 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001045037 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001045037 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
001045037 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001045037 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001045037 920__ $$lyes
001045037 9201_ $$0I:(DE-Juel1)ER-C-3-20170113$$kER-C-3$$lStrukturbiologie$$x0
001045037 9801_ $$aFullTexts
001045037 980__ $$ajournal
001045037 980__ $$aVDB
001045037 980__ $$aUNRESTRICTED
001045037 980__ $$aI:(DE-Juel1)ER-C-3-20170113
001045037 980__ $$aAPC