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Reliable execution of large-scale quantum algorithms requires robust underlying operations, which is ad-
dressed by quantum error correction (QEC). Most modern QEC protocols rely on measurements and feed-
forward operations, which are experimentally demanding and often prone to high error rates. Additionally, no
single-error-correcting code intrinsically supports the full set of logical operations required for universal quan-
tum computing. In this work, we present a complete toolbox for fault-tolerant universal quantum computing
without measurements during algorithm execution by combining the strategies of code switching and concat-
enation. We develop fault-tolerant, measurement-free protocols to transfer encoded information between 2D
and 3D color codes that offer complementary and, in combination, universal sets of robust logical gates. More-
over, we extend the scheme to higher-distance codes by concatenating the 2D color code and integrating code
switching for operations lacking a natively fault-tolerant implementation. Our measurement-free approach
thereby provides a practical and scalable pathway for universal quantum computing on state-of-the-art quan-

tum processors.

INTRODUCTION

A key requirement for the practical deployment of quantum algo-
rithms is their robustness against noise, alongside the capacity to
implement arbitrary operations on qubits. Quantum error correc-
tion (QEC) provides protection against noise by enabling the detec-
tion and correction of errors that arise during computation (1), and
recent experiments have demonstrated substantial breakthroughs in
the field (2-5). The latter is realized through a discrete, universal set
of gates capable of approximating any quantum operation to in prin-
ciple arbitrary precision (1). Fault-tolerant (FT) implementations of
these gates prevent the uncontrolled propagation of errors through
suitable quantum circuit design principles (6). However, achieving
such FT implementations of a full universal gate set poses a substan-
tial challenge, as no known QEC code intrinsically supports a fully
FT universal gate set (7). Two well-established methods to complete
an FT universal gate set are magic state injection and code switch-
ing. Magic state injection makes use of a fault-tolerantly prepared
logical magic resource state (8), which is injected onto the encoded
data qubit (9). Code switching enables the combination of two codes
with complementary sets of transversal gates by transferring encoded
information between them (10, 11). Recent experiments have dem-
onstrated an FT universal gate set by means of code switching
(12) and FT computations in combination with error correction
(3, 5, 13, 14). However, the success probability of many practical
protocols is fundamentally limited by mid-circuit measurements,
which is challenging on many hardware platforms. For instance, in
atomic setups, such as trapped ions and neutral atoms, fluorescence
measurements heat up the atoms, which require additional laser
cooling during or after the read-out. Moreover, in atomic as well
as superconducting quantum processors, measurements are still
orders of magnitude slower than typical gate times, which lead to
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decoherence of idling qubits in the meanwhile and imposes severe
speed limitations (4, 12, 15-17). Real-time decoding (3, 4) and feed-
back based on measurement outcomes has been realized but is still
experimentally demanding (3, 18). In contrast to this, resetting qu-
bits can typically be done fast nondestructively. These limitations
and experimental capabilities motivate the search for FT protocols
that do not rely on mid-circuit measurements or feed-forward op-
erations. Recently, measurement-free (MF) schemes for state prepa-
ration (19) and QEC on different codes have been constructed (20-22).
The idea behind MF QEC schemes, as summarized in (23), is to
transfer the stabilizer information onto additional auxiliary qubits
and perform decoding as well as coherent feedback within the quan-
tum algorithm itself. Last, auxiliary qubits can be reset to be reused
or substituted with fresh qubits, which effectively removes the en-
tropy introduced by the noise.

While the principal idea that MF logical operations are possible
has been outlined in earlier works (23, 24), so far a concrete scheme
to implement an FT universal gate set without relying on measure-
ments, the existing MF schemes only consider small, low-distance
code instances, such as the nine-qubit Bacon-Shor code (22, 24) or
the seven-qubit color code (20, 21, 23), and do not provide a general
method to scale this approach to larger-distance codes with increased
protection and compatibility with computational universality.

In this work, we show how quantum computers can be run au-
tonomously, without measurement interventions, freely program-
mable, and yet in an FT manner. We achieve this by developing a
scheme for freely scalable FT and MF quantum computing that
combines code switching and code concatenation. First, we construct
MF FT code switching schemes to transfer encoded information
between the smallest instances of a two- (2D) and a three-dimensional
(3D) color code. This enables the implementation of a determinis-
tic FT universal gate set that does not require measurements or
feed-forward operations during the execution of a logical quan-
tum algorithm. Then, we scale our schemes to high distances by
concatenating a code block with itself and including switches, as
illustrated in Fig. 1.
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RESULTS

The smallest instance of the 2D color code [[n=7, k=1,d =3]],
commonly known as the Steane code, encodes a single logical qubit
k = 1in seven physical qubits # = 7 and has distance d = 3, meaning
that any single error can be corrected (25). Three X- and Z-stabilizers
are defined symmetrically on the plaquettes formed by four physical

qubits, as illustrated in Figs. 2 and 3B. The logical Pauli operators
correspond to applying X- and Z-operations to all seven qubits and
a logical Hadamard operation can be implemented transversally by
applying seven single-qubit Hadamard gates. In 3D, the smallest
error-correcting instance is the tetrahedral [[n =15k=1,d= 3]]
color code, also known as a Reed-Muller code. It encodes k = 1logical
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Fig. 1. MF universal quantum computing by means of concatenation and code switching. (A) A quantum algorithm can be constructed from a universal logical gate
set such as {H,, CNOT,, T, } and QEC to maintain fault tolerance in an algorithm. We provide a complete toolbox to run these circuits fault-tolerantly on logical qubits, which
are encoded in blocks of physical qubits. (B) Physical qubits form logical qubits, which, in turn, again encode logical qubits, a scheme known as concatenation. (C) We choose
the seven-qubit color code as the base-code of our protocols, which is concatenated with itself and requires a set of auxiliary qubits. (D) To apply the logical gate T, we
switch to a 3D color code that has a transversal implementation. Afterward, the encoded quantum information is transferred back to the initial code. (E and F) The Clifford
operationsH, and CNOT, can be performed transversally on the[[7,1,3]] code and, thus, in a natively FT way by bitwise application of the respective physical operations.

Logical data qubit [[15, 1, 3]]
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Fig. 2. MF fault-tolerant code switching. We can switch between the [[15, 1, 3]] and the [[7, 1, 3]] code fault-tolerantly and without any measurements by making use of
auxiliary logical qubits and controlled Pauli operations. A logical auxiliary qubit is initialized in the |0), state of the [[7, 1, 3]] code for switching to the [[7, 1, 3]] code. Then,
the X-stabilizers of the target code are mapped out by means of a transversal CNOT gate and stored in a subset of physical auxiliary qubits. Then, a combination of con-
trolled Z operations is applied to fix the state into the correct codespace. A similar strategy is used for the inverse switching direction: The [[8, 3, 2]] code is a convenient
choice to map out the desired stabilizer, and we initialize three logical auxiliary qubits in the| + + +), state of the [[8, 3, 2]] code. The target Z-stabilizers are then copied
to the auxiliary logical qubit with transversal CNOT gates. Last, controlled Pauli-X operations are applied to implement the switching operation.
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inn = 15 physical qubits and has distance d = 3 (26). The stabilizer
generators of this code are given in Figs. 2 and 3B, and the logi-
cal X- and Z-operators of this code coincide with those of the
seven-qubit color code. The X- and Z-stabilizers are defined on dif-
ferent support, thus not allowing the transversal Hadamard gate.
However, a transversal FT non-Clifford T gate can be implemented
by applying physical T- and T'-operations in a predefined pattern to
all 15 qubits. The combination of these fully transversal gates, to-
gether with FT code switching, gives rise to a fully transversal uni-
versal gate set. We first review the existing code switching procedure,
before discussing the extension to an MF setting.

Measurement-based code switching

With measurement-based code switching (11, 12, 27, 28), one can
transfer encoded information between the two codes introduced
above by, first, measuring the subset of stabilizers of the target code,
which are not shared with the initial code. This randomly initializes
the state in a +1- or —1-eigenstate of the measured operators. Second,
local Pauli generators are applied to bring the state into a+1-eigenstate
of all target stabilizers without changing the logically encoded infor-
mation (10, 11). Specifically for switching from [[15, 1, 3]] to [[7, 1,
3]], we measure the three X-stabilizers (AR, A%, AG) of [[7, 1, 3]] as
shown in Fig. 2. The initial tetrahedral code is a +1-eigenstate of the
weight 8 cells, so this measurement yields random outcomes +1 for
each target stabilizer. Next, a combination of the Z-stabilizers con-
necting the [[7, 1, 3]] instance with the yellow cell is applied, i.e., a
combination of (B;B, BEG, BEG). For example, in the first step, we
could find the outcome (A, A®, A¥) = (0,1,0) and, based on this
measurement, then apply B;G, which shares an even number of sites
with the red and green plaquettes and a single site with the blue one,
thus fixing the state into the desired target codespace. This proce-
dure is inverted for switching from [[7,1, 3]] to [[15, 1, 3]]: First,
the Z-stabilizers connecting the 2D color code instance with the
yellow cell are measured, i.e., (B®, BX, B2¢), and a combination of
(A%,Ag,Ag) is applied. The respective quantum feedback obeys a
lookup table-like logic as summarized in Materials and Methods.

MF FT code switching
The main idea behind MF code switching is to map the desired sta-
bilizer information to an auxiliary register, but instead of measuring

A
Af = XoXiXoXq
A3 =2Z47,Z,Z4

BS= 7,252,713
BS®= 212,232,
BY'= Z:Z1pZ43Z14
BY*= Z,Z5Z11Z13
BY'= Z6Z 1212213
BS'= ZsZ1Z13Z14

AS= XXX Xs AR = XoXoXsXe
AS =2.2,2.75s AL =Z,2,7:7¢
X = XoXXoXsXoXsXs
2, = 2524252522575

B BY=2y2,2,2,Z;Z1,Z13Z14
BS = 25257526767 11Z17Z13
BY = Z;Z5Z3Z16Z1Z12Z13Z14
BS = Z2,2,2,25Z5Z11Z13Z14
BR, BE, B%, B analogous 7

X, = XX XXX XsXs
2, = 202422527575

and providing classical feedback, a quantum feedback operation is
directly applied with controlled Pauli gates as part of the quantum
algorithm itself. The entropy is then removed by resetting the auxil-
iary qubits or replacing them with fresh auxiliary qubits. In the fol-
lowing, we translate the above scheme for FT code switching to an
MF setting, which poses several challenges: (i) The stabilizer infor-
mation has to be coherently transferred to the auxiliary register in a
reliable way, (ii) the randomly initialized stabilizer value has to be
distinguished from a single error that flipped a given syndrome bit,
and (iii) the coherent feedback operation has to be FT.

The first challenge can be resolved by using suitable logical aux-
iliary qubits. The set of target stabilizers can then be mapped to
these logical auxiliary qubits with purely transversal operations and
subsequently stored on a subset of physical qubits, as indicated
in Fig. 2. The logical auxiliary qubit has to be chosen such that it
shares specific stabilizers with the initial and the target code. It has
to be a +1-eigenstate of the target stabilizers to ascertain the desired
stabilizer values. Additionally, the logical auxiliary qubit has to share
the respective complementary Pauli-type stabilizers of the data qu-
bit to avoid unwanted back-propagation of Pauli operators onto the
data qubits. Here, we use the logical |0); of the seven-qubit color
code for switching from [[15, 1, 3]] to [[7, 1, 3]]. This code shares the
three X-stabilizers with the target code as well as the Z-plaquettes
with the initial tetrahedral code and is, therefore, a suitable candi-
date for MF code switching. Analogously, we use three [[8, 3, 2]]
code instances in the |+ + +); state, as defined in Fig. 3C, for
the inverse switching direction enabling the reliable copying of all
desired stabilizer operators, which is discussed further in Materials
and Methods. Both of these auxiliary codes have to be initialized
in an MF manner themselves. We build on circuits for the logical
[[7, 1, 3]] code, developed in (21, 22), and construct circuits for the
MF initialization of the [[8, 3, 2]] auxiliary qubits, given in Materials
and Methods.

The second challenge is to identify if an error on a data qubit has
propagated onto the auxiliary register and inverted the extracted
stabilizer value. Without any additional information, it is not possi-
ble to identify these errors because the state is initialized randomly
in a +1- or —1-eigenstate of the stabilizer. However, we can distin-
guish the randomly initialized stabilizer value from these potential
errors by comparing pairs of opposing faces belonging to the same
cell, which should agree in the fault-free case (29). The syndrome is

C Sk = XoXiXoX3XXsXeX7
SY = 2,2,2,2:2,2:2:Z+
Sy =Z0Z1ZZ4

St =2,2.2.Z:

S8 = 2,2,2.7¢

2 10

o Pamr

X = XoXiXoXs, Z = ZoZ,4
X = XoX1XeXs, Zf = ZoZ,
XE = XXoXyXe, Z3 = Zo2Z4

Fig. 3. Stabilizer operators of codes used for MF FT code switching. (A) The X- and Z-stabilizers of the [[7, 1, 3]] color code are defined symmetrically on the red, blue,
and green plaquettes (25). (B) Four X-stabilizers of the [[15, 1, 3]] code have support on the eight qubits which form one cell. Four Z-stabilizers are defined analogously on
these four cells as well as six additional independent Z-stabilizers on the weight 4 interfaces between cells (26, 58). (C) One X- and Z-stabilizer of the [[8, 3, 2]] code each
has support on all eight qubits. Three additional Z-stabilizers are defined on the faces of the cube (59).
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coherently updated with Toffoli gates, which flips the respective syn-
drome bit if two opposing faces disagree.

Last, the coherent quantum feedback operation has to be applied
to a set of data qubits. State-of-the-art MF protocols for QEC (20-
22, 24, 30) rely on multiqubit Toffoli gates to implement a lookup ta-
ble feedback operation for small codes. But, in contrast to QEC, we
can implement this feedback operation in an iterative manner, only
relying on two-qubit controlled Pauli operations, which is discussed
further in Materials and Methods. These switching operations corre-
spond to multiple successive two-qubit gates with the same auxiliary
control qubit but different data target qubits. The overall feedback
operation is split into several parts to achieve fault tolerance. In be-
tween, we reset the syndrome and repeat the previous steps for coher-
ent syndrome extraction. Otherwise, a single fault on a qubit storing
one of the syndrome bits would propagate onto all four participating
qubits and result in a logical failure. Figure 4 illustrates the MF FT
switching procedure and summarizes the protocol for switching from
[[15, 1, 3]] to [[7, 1, 3]]. The scheme for MF FT switching in the

inverse direction is constructed conceptually analogously and is dis-
cussed further in Materials and Methods (Fig. 5).

Numerical results

We perform Monte Carlo simulations (31) and implement circuit
level noise, as specified in Materials and Methods. Here, we focus
first on a single-parameter noise model, where every two-qubit gate
in the circuit introduces an error with probability p and each single-
qubit operation is faulty with probability Z. In this setting, we find
that the FT schemes outperform their non-FT counterpart below
physical error rates of p ~ 2 x 1072 and p ~ 1072 in the two switch-
ing directions, respectively, as shown in Fig. 6A. We estimate the
performance of a logical gate, which does not have a transversal
implementation on the given code by simulating a full cycle of
switching back and forth and extract a breakeven point as shown in
Fig. 7 at py, ~ 2.6 X 107, Furthermore, we compare the performance
of the FT MF logical gate to an FT measurement-based version of
this protocol (27) and determine which scheme achieves lower logical
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Fig. 4. High-level circuit for MF fault-tolerant code switching. Sketch of the circuit scheme for an FT implementation of MF code switching protocols for switching from
the [[15, 1, 3]] code to the seven-qubit color code [[7, 1, 3]]. After initializing a logical auxiliary qubit in | 0), on the [[7, 1, 3]] code, the auxiliary qubit is coupled to the data
qubits with a transversal CNOT gate (yellow), which effectively maps the stabilizers from the data to the auxiliary qubit. The corresponding syndrome information is trans-
ferred to a set of physical qubits afterward (orange). In parallel, we map the stabilizer values of the set of opposite faces (violet), which belong to the yellow cell of the
tetrahedron, to an auxiliary register. These opposing faces should agree with their respective counterpart, so the syndrome is updated coherently with a Toffoli gate
(green), i.e., itis flipped if there is a disagreement between opposing faces. The respective feedback operation is split into two parts, namely, feedback 1 (F1) and F2 (pink),
and the full auxiliary register is reset in between (blue), which includes all of the previous steps (yellow, orange, violet, and green).
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Fig. 5. Schematic circuit for MF FT switching from the [[7, 1, 3]] to the [[15, 1, 3]] code. We use a similar strategy as for the inverse switching direction: First, we initial-
ize alogical auxiliary qubitin the| + + +), state of the[[8,3,2]] code (gray) using the circuit shown in fig. S1. Then, we couple those qubits belonging to the red cell to this
encoded auxiliary register with a transversal CNOT gate (yellow) and copy pairs of opposing X-faces of this cell to a register of physical qubits, which are initially prepared
in|0) (pink). We repeat this procedure for the blue and green cells (blue and green). Then, the syndrome information is transferred to a set of physical qubits (orange), as
well as the opposing faces belonging to the same cell (gray). Last, the agreement of opposing faces within the same cell is checked by updating the extracted syndrome
accordingly with a Toffoli gate (green). The quantum feedback operation (F1 to F4) is implemented in four steps with a reset of the updated syndrome in between (pink).
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Fig. 6. MF FT code switching and logical operations. (A) Logical failure rates for switching from the [[15, 1, 3]] to the [[7, 1, 3]] code and the inverse direction for the FT
and non-FT MF protocol, averaged over different logical input states. All two-qubit gate components infer an error with the error rate p and any single-qubit gate operation
introduces an error with a probability %.The gray dashed lines correspond to the approximated polynomial (Eq. 1) with the coefficients given in table S2. The black dashed
line is the physical error rate, indicating a breakeven point for the FT schemes at p ~ 3 x 107, (B) Difference in the logical error rate between the measurement-
based and the MF protocol for the FTH, gate on the tetrahedral [[15, 1, 3]] code, operated above threshold in the regime of current experimental capabilities. The MF protocol
achieves lower logical failure rates in the area depicted in green with circles, while the measurement-based version yields lower logical failure rates in the area shown in pink
with crosses. The symbols indicate parameter regimes demonstrated in experiments with trapped ions in static traps ((]) (72, 15), shuttling-based traps (O) (76), and with
neutral atoms in tweezer arrays (A) (5, 42-44).
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Fig. 7. MF FT code switching cycle and approximated scaling of the logical T gate. (A) Logical error rate for a full switching cycle, starting and ending in the [[7, 1, 3]] code. The
gray dashed line corresponds to the summed polynomials of each individual switching step. We find a breakeven point at approximately py, = 2.6 X 10~*as indicated by the red
dashed line. (B) Approximated error polynomials of the logical error rates for the logical T gate (darker colored) and the logical Toffoli gate (lighter colored) for concatenation levels
I = 2,3,and 4, based on the coefficients summarized in table S2 and the polynomials given in table S3 for small physical error rates p. The level / Toffoli gate error rates dominate

the logical failure rates of the logical level (/ — 1) T gate, and we find a pseudothreshold of p,;, ~ 1 x 10~ for both logical operations (gray dashed vertical line).

failure rates. To this end, we introduce an additional parameter
Pidle.meas Which indicates the error rate on idling data qubits during
measurements. We identify a large parameter regime where the
MF logical operation outperforms the measurement-based version,
shown in green in Fig. 6B.

Scalability of MF FT universal gates

Scaling up an FT quantum computing architecture to high-distance
codes is a crucial step toward building practical, large-scale quan-
tum computers that require low error rates (32). However, this task
presents major challenges in the measurement-based setting, as
qubit overhead, computational complexity, and hardware require-
ments increase substantially. Code concatenation offers a powerful
method for constructing high-distance codes from smaller ones be-
cause the failure probability is suppressed doubly exponentially be-
low the threshold with each layer of concatenation while maintaining
polynomial time decoding complexity (6, 33), at the cost of expo-
nentially growing qubit overhead. In the following, we scale the pre-
sented MF FT protocols to high-distance codes by concatenating the

Buttetal, Sci. Adv. 11, eadv2590 (2025) 13 August 2025

[[7, 1, 3]] color code with itself and combining this with code
switching, thus effectively giving access to the logical T gate for the
concatenated [[7, 1, 3]] code.

As a first step, we estimate the leading order contributions to the
logical failure rate for the initial, nonconcatenated code. The noisy
two-qubit gates and the three-qubit Toffoli gates dominate the total
logical failure rate because the number of two-qubit gates is orders
of magnitude larger than that of single-qubit operations. This allows
us to approximate the effective error polynomial, as discussed fur-
ther in Materials and Methods, as

L= Cng + G poftP2Proff T Ctoffpfoff + O(Ps) 1

The coefficients ¢, ¢, g, and ¢, g correspond to the number of
weight 2 faults on the specified components (two-qubit gates,
Toffoli gates) that lead to a logical failure, and p, and p, 4 are the
error rates on the respective circuit component. We determine the
coefficients ¢, and ¢, . for the different protocols by determinis-
tically placing all weight 2 fault configurations and counting the
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number of faults leading to a failure, as summarized in table S2. We
find that the approximated polynomial in Eq. 1 fits the logical failure
rates, as shown in Fig. 6A.

Now, we concatenate our scheme with the seven-qubit color code
by replacing each physical qubit with another encoded [[7, 1, 3]]
code. Each operation in our previous circuit then corresponds to
a logical operation, as for example a physical controlled-NOT
(CNOT) gate is translated into a transversal two-qubit gate CNOT®”.
Analogously, each physical error rate in Eq. 1 is replaced by the re-
spective logical gate error rate, e.g., the physical two-qubit gate error
rate p, is replaced by the transversal CNOT gate error rate p(zl),
where the superscript (1) indicates the level of concatenation. How-
ever, the Toffoli gate cannot be simply translated in the same way to
the next concatenation level because it involves non-Clifford opera-
tions, which are not natively FT on the seven-qubit color code. The
concatenated Toffoli gate can be realized by including code switch-
ing steps, as illustrated in Fig. 8.

Continuing to concatenate with the [[7, 1, 3]] code up to concate-
nation level [ 4+ 1, we find that the noisiest components of the level
I+ 1logical T gate are the Toffoli gates. These Toffoli gates are them-
selves dominated by code switching steps on concatenation level [
and, thus, the Toffoli gates of level / and so on. This, in turn, means,
that the pseudothreshold of the logical operations of level I > 11is ap-
proximately given by the pseudothreshold of the concatenated Toffoli
gate of level I > 1, as shown in Fig. 7. It is shifted to a slightly lower
value as compared to that of the logical Ty, of level 1 because the logi-
cal Toffoli gate now contains multiple code switching steps. However,
we can estimate a lower bound of the pseudothreshold of the concat-
enated logical gate of level ] > 1 of pi; '~ 1x 107, based on the ap-
proximated effective error polynomials summarized in table S3.

In summary, we have constructed a toolbox for implementing any
single logical operation fault-tolerantly and ME, which is scalable to
larger code distances by concatenating the seven-qubit color code with
itself and introducing the MF FT switch to realize logical Toffoli gates.
However, running algorithms fault-tolerantly requires an additional
building block, namely, QEC (34). Previous analyses on how to inte-
grate QEC into a quantum algorithm (33, 35, 36) have been extended to
concatenated codes (37, 38), and recent works have shown that O(1)
rounds of stabilizer extraction for each logical operations can be suffi-
cient for specific FT quantum algorithms (39). Recent schemes for FT
MEF QEC (22) rely on Toffoli gates to implement corrections according
to a lookup table based quantum feedback for the [[7, 1, 3]] code. We
can integrate this scheme into our framework by concatenating the
code with itself and including the MF FT switch for each logical Toffoli
gate. Note that the MF QEC cycles coherently implement quantum

—ADH
[T Fo{ T T 1Ay

Fig. 8. Logical operations on the concatenated [[7, 1, 3]] code. Decomposition
of a Toffoli gate into single- and two-qubit gates. If the control qubits are reset after
this gate, we do not need to execute the operations shown in gray. We additionally
need to switch from the [[7, 1, 3]] to the tetrahedral [[15, 1, 3]] code before applying
the non-Clifford T gate in the concatenated regime where each line corresponds to
alogical [[7, 1, 3]] color code qubit. Note that all operations except the first and last
H gates can be executed transversally on the [[15, 1, 3]] code, making the CCZ gate
transversal for this code.
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feedback without the need of classical information processing. The cost
of one QEC round below the pseudothreshold for concatenation level
I'> 1is much smaller than the cost of a logical T gate on the concatenat-
ed [[7, 1, 3]] code, as discussed in Materials and Methods. Therefore,
the pseudothreshold of the combined block of this logical operation fol-
lowed by QEC is still approximately given by the pseudothreshold of
the bare logical operation.

DISCUSSION

The presented MF and FT implementation of a universal gate set
provides a route toward scalable FT quantum computing. Previ-
ous works on universal gate sets by means of concatenated codes
(37, 40, 41) rely on the concatenation of different code types with
complementary sets of gates. These require at least 49 and up to 105
physical qubits to realize a universal gate set for a distance-3 code,
while, in our approach, 35 qubits are sufficient, provided qubit reset
is available, which reduces the experimental requirements substan-
tially. Remarkably, the pseudothresholds of our protocols are com-
petitive and lie in between the lower and upper bounds indicated in
these works (37).

Our schemes provide a feasible and scalable approach for MF FT
universal quantum computing. They are built on heavily parallelizable
physical operations, which can be implemented efficiently in exper-
imental platforms that offer long-range connectivity between qubits.
Neutral atom platforms, for example, have demonstrated massively
parallelized Clifford operations (42) as well as shuttling of entire logical
qubits (5), which are key building blocks of our protocols. Furthermore,
mid-circuit measurements and real-time feedback are still experimen-
tally demanding due to relatively slow measurements, while single- and
two-qubit gate fidelities are high (5, 42-44). These features make
neutral atom platforms an ideal candidate for MF protocols and
concatenated code constructions (45). Complementary to neutral atom
platforms, also trapped-ion quantum processors have demonstrated
the capabilities required for handling concatenated codes in 2D archi-
tectures (46, 47), and shuttling-based approaches are, in principle, able
to host the presented code constructions (13, 16, 48, 49). Also, super-
conducting platforms with long-range couplers are advancing toward
the realization of nonlocal connectivity (50), while spin-qubit quantum
computing architectures have shown progress along these lines, lever-
aging shuttling-based techniques (51, 52).

Tailoring of the theoretical proposal to a given experimental
platform is expected to further increase the logical success rates.
This includes the adaptation to a biased noise setting, which is pres-
ent in various experimental architectures (5, 12, 43) and might sim-
plify the presented protocols, substantially reducing the hardware
requirements. The implementation of natively supported multiqubit
gates (42) could further mitigate hardware limitations. Additionally,
the determination of optimal thresholds for concatenated quantum
codes, as well as the extent of possible improvements to circuits and
schemes, remains an open problem. Here, in particular, examining
to which extent the integration of repetition code-based elements in
the coherent quantum feedback loop (23, 24) or coherent readout of
an overcomplete stabilizer set (20, 22) will be able to improve the
threshold is an interesting future research extension. This includes
exploring the potential trade-off between qubit resources and per-
formance, by investigating protocols that might require a higher
number of auxiliary qubits than in the present work but possibly
offer increased thresholds.
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Optimizing the integration of QEC into a logical algorithm in this
concatenated setting (37, 39) by investigating how often and on which
concatenation levels (MF) QEC should be carried out offers the poten-
tial for improved logical error rates. Overall, our findings outline a prac-
tical pathway toward fully scalable FT' quantum computing, leveraging
a completely MF approach that makes our method feasible for various
experimental state-of-the-art quantum hardware platforms.

MATERIALS AND METHODS

FT code switching

It is possible to transfer encoded information between the [[7, 1,
3]] and [[15, 1, 3]] codes because they correspond to two gauges of
the same subsystem code (29). A subsystem code is defined by its
gauge group G, which describes a general subgroup of the n-qubit
Pauli group (27, 29, 53). The gauge group G of the tetrahedral sub-
system code is generated by all independent X- and Z-type faces of
the tetrahedral structure shown in Fig. 3B. The subsystem’s stabi-
lizer group S C G is the center of G, and it is generated by those
elements commuting with all other elements in G, which are the
weight 8 cells Bg, BE,BS, BZ with 6 = X and Z. Compared to the
stabilizers of the tetrahedral [[15, 1, 3]] stabilizer code as defined
in Fig. 3B, the Z-stabilizers of the subsystem code are not defined
on the 10 independent faces of the code, but only on the four
weight 8 cells. On the tetrahedral [[15, 1, 3]] stabilizer code, the
gauge of the subsystem is, therefore, fixed such that the codestate is
not only a +1-eigenstate of the weight 8 cells but also of the Z-faces
within the tetrahedron. In the regime of the seven-qubit color code
[[7, 1, 3]], in addition to the cells, also, the three weight 4 X- and
Z-faces, as shown in Fig. 3A, are fulfilled. Figure 5 shows the high-
level circuit scheme for MF FT switching from the 2D [[7, 1, 3]]
code to the 3D [[15, 1, 3]] code. Analogously to the inverse direc-
tion discussed in Fig. 2, we have to use a suitable code for the logi-
cal auxiliary qubits. Here, we choose three [[8, 3, 2]] codes. The
red, blue, and green cells of the tetrahedron are each mapped to
one instance of the [[8, 3, 2]] code. This code shares the Z-
plaquettes of the target [[15, 1, 3]] code, and it is also a +1-eigenstate
of the weight 8 X-volume operators defined on the cells of the sub-
system and the initial code and can, therefore, be used to extract
the target stabilizers. Here, we require four quantum feedback op-
eration steps instead of two, as we did for the inverse switching
direction. For switching from [[15, 1, 3]] to [[7, 1, 3]], we only in-
cluded the feedback acting on the [[7, 1, 3]] instance and could
disregard the bulk because this is reinitialized afterward. However,
for switching from [[7, 1, 3]] to [[15, 1, 3]], the full weight 4 quan-
tum feedback has to be applied directly to fix the gauge correctly.

Construction of feedback operation

For switching between two codes, we can construct the quantum
feedback operation in an iterative manner, which is different to the
approach for QEC. We first consider switching from the [[15, 1, 3]] to
the [[7, 1, 3]] code. If a qubit storing a certain syndrome bit is in the
|1) state, then a certain Pauli plaquette has to be applied: If the qubit
storing the syndrome bit A% is in |1), then we apply the Z-face B5; if
A? isin|1), then we apply the Z-face BRG, and if A is in |1), then we
apply the Z-face BEB If several syndrome bits are in the [1) state, then
the combination of the Pauli plaquettes is applied, which effectively
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flips some data qubits twice, thus implementing an identity operation
on a subset of physical qubits. Note that, in practice, we only apply the
respective operations on those data qubits, which encode the target
[[7,1,3]] code and leave the qubits forming the yellow cell untouched.
Before switching back, we reinitialize the yellow cell using the circuit
shown in fig. S1. For the inverse switching direction, we use the same
table but interchange the right and left column, e.g., if the syndrome
bit storing the syndrome bit BgG is in|1), then we apply the X-face Ai.

Numerical methods

We perform Monte Carlo simulations to determine the logical fail-
ure rates of our protocols (3I). Every component in the circuit is
implemented by, first, applying the ideal operation followed by an
error E with a given probability p. Specifically, we implement a
depolarizing channel after each single- and two-qubit gate. With
probabilities p, and p, one of the errors in the sets E, and E, is ap-
plied and we can define the error channels as

Pl ZEszz

&)= (1-p, p+—zE’pE’

&)=
2)

with E¥ € {X,Y,Z}, for k =1,2,3 and Ef € {IX, XL, XX, IY, YL, YY,
12,721,772, XY, YX,XZ, ZX,YZ, ZY} for k = 1, , 15. Furthermore,
we initialize and measure all qubits in the Z-basis and simulate faults
on these components by applying X-flips after and before the respec-
tive operation with a given probability p; .. and p, ... Additionally,
idling qubits may dephase during measurements, which we model
with the error channel

Sidle,meas(p) = ( 1 _pidle,meas) p +pidle,measzpz (3)

We simulate a simple single-parameter noise model, where P = P2 =
10 - piis = 10 - Preas = 10 - pyand pigie eqs = 0 for the results shown
in Fig. 6A. We include dephasing during measurements for the
comparison to the measurement-based protocol as indicated on the
y axis in Fig. 6B.

Furthermore, we decompose the Toffoli gates into single- and two-
qubit gates, as shown Fig. 8. If at least one of the two control qubits is not
used afterward, then we do not need to apply the last six components
shown in gray. We simulate the decomposed Toffoli gate that we use in
our protocol for all eight possible binary input states and determine the
probability of the target qubit being flipped. We perform a linear fit for
each input state and average the obtained slope. For error probabilities
p = p, = 10p, on single- and two-qubit gates, we find

Pro = 2.88(10) - p (4)

Analogously, we also determine the probability of flipping the
respective target qubit for two consecutive Toffoli gates that share
one control and the target qubit, as used in parts of our MF FT
switching protocols. In this case, we find

Patofts = 512(23) p <2 Proft (5)

We therefore simulate errors on each Toffoli gate by flipping the
target qubit with probability p, ¢, which slightly overestimates the to-
tal Toffoli gate error rate. Note that the controlled-controlled-Z (CCZ)
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gate is a native gate on Rydberg platforms (54, 55), which would allow
for a more efficient implementation of the constructed protocols.

Effective error polynomial and fault-path counting

We estimate the leading order contributions to the logical failure
rate of a protocol, such as switching or state initialization, for the
initial, nonconcatenated code. For small physical error rates, these are

2 2 2 2
PL=6P5 +C1PT F CooiPo T CinitPinie T €1,2P1P2 T CopoiP2Proft

3
+ C,initP2Pinit T €101 Profi T+ €1,initP1 Pinit + CinittofiPinitLroi + O (P )
(6)

where the coefficients ¢;; with i, j = {1, 2, toff, init} correspond to the
number of weight 2 faults on the specified components (single- and
two-qubit gates, Toffoli gates, and physical qubit initializations) that
lead to a logical failure, and p,, p,, P4 and p;,;; are the error rates on
the respective circuit components. However, the number of two-qubit
gates in our MF FT code switching protocols is orders of magnitude
larger than that of single-qubit gates and physical qubit initializa-
tions. Therefore, we estimate ¢, Ciyi> €1 jnit> €1 o> AN i rof <K €3
and, in the following, neglect these coefficients in the above error
polynomial. Furthermore, we consider smaller error rates on single-
qubit gates and initializations than on two-qubit gates (15) and approxi-
mate p; = Pinie = 11’—(2) in our simulations. In this regime, we therefore

also approximate that the contributions from error configurations
with one fault on a two-qubit gate and another fault on a single-qubit
gate or a physical qubit initialization scaling with p, and p, ; are negli-
gible. With these approximations, we find in leading order

DL R P + CooiPalroft + CoiPg + O(P°) (7)

For the switching and state initialization protocols, we determine
the coeflicients in the error polynomial by deterministically placing
all possible weight 2 configurations on the specified type of compo-
nent, summarized in table S2. We plot Eq. 7 with the determined
coeflicients given in table S2 for each switching direction and com-
pare it to the logical failure rate obtained from Monte Carlo simula-
tions, which is shown in Fig. 6A. We find that the logical failure rate
and the determined polynomial agree within 6% below p = 107>,

Concatenated error polynomial

Next, we extend this approach to the building blocks required for FT
quantum computing, namely, the initialization of a logical qubit in
the [[7, 1, 3]] code, final projective measurements, the logical gates
H;, T, CNOT, and Toffoli gates on the seven-qubit color code, as
well as switching in both directions and rounds of error correction,
which have to be performed between logical operations in an algo-
rithm (33-37, 39). Table S3 summarizes the dominating leading
order contributions to the logical failure rate for each block in the
column labeled “level 17 The logical failure rates for operations that
have a natively transversal implementation on the [[7, 1, 3]] code,
i.e., projective measurements and the H and CNOT gates, generalize
in a straight-forward way to the next concatenation level: For seven

physically executed gates, there are ma.ximally( 7 ) noncorrectable

2
error configuration occurring with a probability p©2, where p©@ is
the physical gate error rate. Analogously for concatenation level

Buttetal, Sci. Adv. 11, eadv2590 (2025) 13 August 2025

I+ 1, the final logical error rate is given by< 7 ) - p2 with the fail-
2

ure probability p on the next lower concatenation level (37, 56).
Furthermore, we find that faults on the CNOT and Toffoli gates
dominate the total rate p; for switching between codes on the first
level of concatenation, while contributions from faulty single-qubit
gate operations are negligible (Fig. 6A). We follow the same strategy
to estimate the logical error rates of the remaining building blocks of
qubit initialization and QEC: The total logical error rate is domi-
nated by the two-qubit and Toffoli gate error rates, and we neglect
the remaining parts of the polynomial. Note that the coefficient
c:;r;t) = 0 for logical qubit initialization because it is only one Toffoli
gate in the respective circuit.

The lowest weight w of an uncorrectable error configuration on a
code that is constructed by concatenating two codes of distance d,

and d, is given by

4 d+1 d, +1
W:d+1: 1 A 2 :>d/:l
2 2 2 2

(dydy+dy+dy—1) (8)

where d’ is the distance of the resulting concatenated code.

Comparing the different logical error rates of the first level of
concatenation, we see that the logical error rate of any logical op-
eration that includes a switching step is dominated by this switch-
ing procedure because this has a much higher error rate than the
transversal CNOT or single-qubit gates. Specifically, we need to
switch in both directions once to implement the logical T gate on
the seven-qubit color code. The logical error rate of this opera-
tion T(Ll) is, therefore, approximately given by the error rates of
the individual switching steps pEl)Jr_) ~ pg) + p(_l,). This approxima-
tion holds if one switching direction has much larger coefficients
in the error polynomial than the other direction, which is the case
here as summarized in table S2. Additionally, we verify this ap-
proximation by simulating a complete cycle of switching and
compare this to the summed polynomials of each direction, as
shown in Fig. 7A.

Scaling of the logical failure rate for concatenated scheme
The Toffoli gate on the first level of concatenation also contains switch-
ing steps as illustrated in Fig. 4. We consider two versions of the Toffoli
gate: the reduced Toffoli gate, where the control qubits are not used af-
terward and we only apply the operations shown in black, and the full
Toffoli gate, which includes the full decomposition and we also execute
the operations depicted in gray. If each qubit is an encoded [[7, 1, 3]]
code before applying the Toffoli gate, then we have to switch to the [[15,
1, 3]] code after the first H; gate to apply the logical T} and the transver-
sal CNOT| gates and, again, switch back to the [[7, 1, 3]] code in the
end before the final H; gate. The logical error rate for the Toffoli gate is,
therefore, also dominated by the switching procedure and can be ap-
proximated by summing up the individual switching error rates. Note
that summing up all individual switching error rates on control and tar-
get qubits of the logical Toffoli gate overestimates the final probability of
flipping only the respective target qubit.

We now determine the dominant contributions to the logical failure
rate for concatenation level I + 1 for the not inherently transversal
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Fig. 9. Circuits for MF FT switching between the [[15, 1, 3]] and the [[7, 1, 3]] code. (A) Switching from [[15, 1, 3]] to [[7, 1, 3]]. First, all shown gates up to the double
line are executed. Then, we start from the beginning and, again, perform all gates up to bracket number 1 and jump into the second bracket 2 to execute the last three CZ
gates. The operation R refers to qubit reset, which is either done by reinitializing the physical qubit in the |0) state or replacing it with a fresh qubit. The green box corre-
sponds to the MF encoding of the logical | 0), state on the[[7,1,3]] color code (27) as shown in fig. S1. (B) Switching from [[7, 1, 311 to [[15, 1, 3]]. The gray boxes correspond
to the MF initialization of the logical auxiliary state| + + +) shownin fig. S1.The blue boxes correspond to the circuit shown in (C). (C) Circuit for updating the syndrome
based on agreement check. Qubits A0, A1, and A2 are used to check the agreement of opposing faces by copying both respective syndrome bits onto the same qubit.
Qubits A4, A5, and A6 store the syndrome information, which is updated with two Toffoli gates each.

logical gates of the [[7, 1, 3]] code. The rate of the full Toffoli gate
on level 2 is again dominated by the switching procedure, i.e., the
probabilities p© and p%, which, in turn, are dominated by the
logical Toffoli gate of level 1. Iterating this to level I + 1, we find that
the logical operations of concatenation level /4 1 will always be
dominated by the Toffoli gate error rate because this includes the

Buttetal, Sci. Adv. 11, eadv2590 (2025) 13 August 2025

most switching steps and, therefore, the noisiest parts of the re-
spective logical operation. Also, compiling our circuits into three-
qubit gates, which are natively supported on neutral atom (54, 55)
and some trapped-ion platforms (57), reduces the overhead in
physical gate operations by only (9(71) gate operations. However,
the overall logical error rate will not change significantly, as it is
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still dominated by the switching steps that have to be performed.
Figure 7B shows the resulting polynomial with the leading order
contributions to the logical failure rate, as given in the third col-
umn of table S3, for the logical concatenated T; and Toffoli gates.
We find a similar pseudothreshold at p,;, = 1 x 107 for both proto-
cols because the noisy Toffoli gates dominate the effective total
logical error rate.

Cost of QEC rounds

Like the MF FT code switching protocols, also, the QEC blocks of con-
catenation level / 4+ 1are dominated by the logical Toffoli gate error rate,
as this presents the component with the largest error rate. Consideriné
protocol (22), we find an upper bound of the dominant coefficient c:(?;
of the logical failure rate for one round of QEC to be

#Toffoli gat 21 - =
(O o ofrolr gates ) _ <4
toff 5 ) toff toff

)

The cost of one round of QEC below the pseudothreshold for
concatenation level I > 1is, therefore, much smaller than the cost of
alogical T gate on the concatenated [[7, 1, 3]] code.

Note that the scheme presented in (21) may leave an X-error and
a Z-error on different data qubits after one round of QEC. This error
configuration is in general not correctable after applying the T gate
because X-errors are mapped to a superposition of Pauli errors.

Resource analysis and circuits

Table S4 summarizes the required resources for the constructed MF
FT protocols in terms of qubit count, number of two- and three-qubit
gates. Figure 9 shows the explicit circuits that we implement for
switching between the tetrahedral [[15, 1, 3]] code and the [[7, 1, 3]]
code. Here, the reset-operation R includes the reinitialization of the
respective physical qubit or the substitution with a fresh auxiliary
qubit in a pure state. Based on the numbers of required two-qubit
gates and qubits, we can estimate the resources that are needed at a
given level of concatenation. For each new layer, every physical qu-
bit is replaced by seven physical qubits, and every physical CNOT
gate is replaced by seven CNOT gates. For each Toffoli gate, we need
to perform at most three switching operations that each contain the
number of gates and qubits required for the next lower level. The
number of two-qubit gates C; and the number of physical qubits Q;
at concatenation level [ are, therefore, approximately given by

Cl 7 - Cl—l +3t- Cl—l

(10)
QR7-Q+1-Q,y

where t = 48 is the number of Toffoli gates and £, = 8 is the number
of distinct qubits that participate in parallel in Toffoli gates in the
considered circuit. Here, the intuition is the following: One full code
switching cycle on a level 1 logical qubit requires Q; = 35 physical
qubits. To go to the next higher level, we replace each of the 35 phys-
ical qubits with a level 1 logical qubit consisting of seven physical
qubits. During the code switching process, at most eight qubits are
involved in Toffoli gates at the same time. Thus, we have to perform
code switching on eight level 1 qubits, resulting in additional 8 X 35
physical qubits. Note that, in principle, one could use less additional
physical qubits for the switching on the level 1 qubits, but we neglect
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Fig. 10. Resource overhead for the T, gate. We determine the required level of
concatenation to reach certain target logical error rates, indicated in the figure leg-
end, for the logical T, gate for a given physical error rate p. We then recursively
calculate the numbers of two-qubit gates and qubits for the required concatena-
tion level. The gray numbers 1, 2, and 3 indicate the concatenation levels 1, 2, and
3, respectively.

this for simplicity. Replacing again all physical qubits by level 1 logical
qubits and taking into account additional qubits for switching then
lead to Eq. 10. Note that this formula is overestimating the number of
qubits that is needed at a certain level of concatenation because we
assumed that qubits are used in a sequential manner. This means that
some qubits are idling while switching steps are performed on other
sets of qubits. The exact number of required qubits depends on the
scheduling and parallelization capabilities of the experimental plat-
form. Given the polynomial in table S3, we can infer the level of con-
catenation that is needed for a certain physical error rate p to reach a
certain logical error rate p; . With this, we now estimate the overhead
in gates and qubits that is required to reach a certain logical error rate
for the logical T| gate, which is shown in Fig. 10.
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