001045518 001__ 1045518
001045518 005__ 20251007202032.0
001045518 0247_ $$2doi$$a10.1002/ente.202402191
001045518 0247_ $$2ISSN$$a2194-4288
001045518 0247_ $$2ISSN$$a2194-4296
001045518 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03523
001045518 037__ $$aFZJ-2025-03523
001045518 082__ $$a620
001045518 1001_ $$0P:(DE-Juel1)177657$$aHall, Christopher$$b0$$ufzj
001045518 245__ $$aA Proof‐of‐Concept Membrane Module Concept for Solar Thermal Water Splitting Using Oxygen Transport Membranes
001045518 260__ $$aWeinheim [u.a.]$$bWiley-VCH$$c2025
001045518 3367_ $$2DRIVER$$aarticle
001045518 3367_ $$2DataCite$$aOutput Types/Journal article
001045518 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1759819333_19323
001045518 3367_ $$2BibTeX$$aARTICLE
001045518 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001045518 3367_ $$00$$2EndNote$$aJournal Article
001045518 520__ $$aSolar thermal water splitting using oxygen transport membranes enables sustainable hydrogen production and can thus play a key role in the emerging hydrogen economy. Membrane reactors potentially reduce temperature required by shifting the concentration equilibrium, thereby increasing the efficiency of thermal water splitting. This work presents a scaled-up proof-of-concept (PoC) module design for solar thermal water splitting applications utilizing oxygen transport membranes in relevant environments. The PoC module is based on a flexible and scalable stack design with parallel-oriented, membrane-containing layers, which supports the scalability of the concept. Solar heat integration is optimized for direct irradiation by a High Flux Solar Simulator. Key outcomes include focal point adjustments and design modifications using an irradiated copper plate to mitigate hot spots. The PoC module's material concept prevents thermal stresses and ensures gas-tight sealing of the membranes at an operating temperature of 850 °C under reducing and corrosive atmospheres. Optimal flow rates for steam (30–213 mmol min−1) and methane (8–54 mmol min−1) are calculated for the PoC module, resulting in efficient hydrogen (7–51 mmol min−1) and syngas (22–156 mmol min−1) production, using a membrane area of 167 cm2, with H2O and CH4 conversion rates of 25% and 95%, respectively.
001045518 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001045518 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001045518 7001_ $$0P:(DE-Juel1)129660$$aSchulze-Küppers, Falk$$b1$$eCorresponding author
001045518 7001_ $$aBittner, Kai$$b2
001045518 7001_ $$0P:(DE-Juel1)184692$$aBüddefeld, Bernd$$b3
001045518 7001_ $$0P:(DE-Juel1)157695$$aMargaritis, Nikolaos$$b4$$ufzj
001045518 7001_ $$0P:(DE-Juel1)133776$$aWolters, Jörg$$b5$$ufzj
001045518 7001_ $$0P:(DE-Juel1)133667$$aGroß-Barsnick, Sonja$$b6$$ufzj
001045518 7001_ $$0P:(DE-HGF)0$$aDuarte, Juan Pablo Rincon$$b7
001045518 7001_ $$0P:(DE-HGF)0$$aNeumann, Nicole Carina$$b8
001045518 7001_ $$0P:(DE-Juel1)142196$$aNatour, Ghaleb$$b9$$ufzj
001045518 773__ $$0PERI:(DE-600)2700412-0$$a10.1002/ente.202402191$$gp. 2402191$$n10$$p2402191$$tEnergy technology$$v13$$x2194-4288$$y2025
001045518 8564_ $$uhttps://juser.fz-juelich.de/record/1045518/files/Energy%20Tech%20-%202025%20-%20Hall%20-%20A%20Proof%E2%80%90of%E2%80%90Concept%20Membrane%20Module%20Concept%20for%20Solar%20Thermal%20Water%20Splitting%20Using%20Oxygen.pdf$$yOpenAccess
001045518 8767_ $$d2025-08-20$$eHybrid-OA$$jDEAL
001045518 909CO $$ooai:juser.fz-juelich.de:1045518$$popenaire$$popen_access$$pOpenAPC_DEAL$$pdriver$$pVDB$$popenCost$$pdnbdelivery
001045518 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177657$$aForschungszentrum Jülich$$b0$$kFZJ
001045518 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129660$$aForschungszentrum Jülich$$b1$$kFZJ
001045518 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157695$$aForschungszentrum Jülich$$b4$$kFZJ
001045518 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133776$$aForschungszentrum Jülich$$b5$$kFZJ
001045518 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133667$$aForschungszentrum Jülich$$b6$$kFZJ
001045518 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142196$$aForschungszentrum Jülich$$b9$$kFZJ
001045518 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001045518 9141_ $$y2025
001045518 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001045518 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001045518 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001045518 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
001045518 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-18
001045518 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001045518 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY TECHNOL-GER : 2022$$d2024-12-18
001045518 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-18$$wger
001045518 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
001045518 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001045518 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
001045518 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001045518 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001045518 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001045518 920__ $$lyes
001045518 9201_ $$0I:(DE-Juel1)ITE-20250108$$kITE$$lInstitute of Technology and Engineering$$x0
001045518 980__ $$ajournal
001045518 980__ $$aVDB
001045518 980__ $$aUNRESTRICTED
001045518 980__ $$aI:(DE-Juel1)ITE-20250108
001045518 980__ $$aAPC
001045518 9801_ $$aAPC
001045518 9801_ $$aFullTexts