001     1045518
005     20251007202032.0
024 7 _ |a 10.1002/ente.202402191
|2 doi
024 7 _ |a 2194-4288
|2 ISSN
024 7 _ |a 2194-4296
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-03523
|2 datacite_doi
037 _ _ |a FZJ-2025-03523
082 _ _ |a 620
100 1 _ |a Hall, Christopher
|0 P:(DE-Juel1)177657
|b 0
|u fzj
245 _ _ |a A Proof‐of‐Concept Membrane Module Concept for Solar Thermal Water Splitting Using Oxygen Transport Membranes
260 _ _ |a Weinheim [u.a.]
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1759819333_19323
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Solar thermal water splitting using oxygen transport membranes enables sustainable hydrogen production and can thus play a key role in the emerging hydrogen economy. Membrane reactors potentially reduce temperature required by shifting the concentration equilibrium, thereby increasing the efficiency of thermal water splitting. This work presents a scaled-up proof-of-concept (PoC) module design for solar thermal water splitting applications utilizing oxygen transport membranes in relevant environments. The PoC module is based on a flexible and scalable stack design with parallel-oriented, membrane-containing layers, which supports the scalability of the concept. Solar heat integration is optimized for direct irradiation by a High Flux Solar Simulator. Key outcomes include focal point adjustments and design modifications using an irradiated copper plate to mitigate hot spots. The PoC module's material concept prevents thermal stresses and ensures gas-tight sealing of the membranes at an operating temperature of 850 °C under reducing and corrosive atmospheres. Optimal flow rates for steam (30–213 mmol min−1) and methane (8–54 mmol min−1) are calculated for the PoC module, resulting in efficient hydrogen (7–51 mmol min−1) and syngas (22–156 mmol min−1) production, using a membrane area of 167 cm2, with H2O and CH4 conversion rates of 25% and 95%, respectively.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Schulze-Küppers, Falk
|0 P:(DE-Juel1)129660
|b 1
|e Corresponding author
700 1 _ |a Bittner, Kai
|b 2
700 1 _ |a Büddefeld, Bernd
|0 P:(DE-Juel1)184692
|b 3
700 1 _ |a Margaritis, Nikolaos
|0 P:(DE-Juel1)157695
|b 4
|u fzj
700 1 _ |a Wolters, Jörg
|0 P:(DE-Juel1)133776
|b 5
|u fzj
700 1 _ |a Groß-Barsnick, Sonja
|0 P:(DE-Juel1)133667
|b 6
|u fzj
700 1 _ |a Duarte, Juan Pablo Rincon
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Neumann, Nicole Carina
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Natour, Ghaleb
|0 P:(DE-Juel1)142196
|b 9
|u fzj
773 _ _ |a 10.1002/ente.202402191
|g p. 2402191
|0 PERI:(DE-600)2700412-0
|n 10
|p 2402191
|t Energy technology
|v 13
|y 2025
|x 2194-4288
856 4 _ |u https://juser.fz-juelich.de/record/1045518/files/Energy%20Tech%20-%202025%20-%20Hall%20-%20A%20Proof%E2%80%90of%E2%80%90Concept%20Membrane%20Module%20Concept%20for%20Solar%20Thermal%20Water%20Splitting%20Using%20Oxygen.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1045518
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177657
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129660
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)157695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)133776
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)133667
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)142196
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DEAL: Wiley 2019
|0 PC:(DE-HGF)0120
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-18
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGY TECHNOL-GER : 2022
|d 2024-12-18
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-18
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ITE-20250108
|k ITE
|l Institute of Technology and Engineering
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ITE-20250108
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21