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Gene transcription, neurotransmitter, and
neurocognition signatures of brain
structural-functional coupling variability

Lin Jiang 1,2,3, Sarah Genon 4,5, Jiayu Ye1,2, Yan Zhu1,2, Guangying Wang1,2,
Runyang He1,2, Pedro A. Valdes-Sosa1,2,6, Feng Wan7, Dezhong Yao 1,2,8,9 ,
Simon B. Eickhoff 4,5, Debo Dong 4,10 , Fali Li 1,2,9 & Peng Xu 1,2,9

The relationship between brain structure and function, known as structural-
functional coupling (SFC), is highly dynamic. However, the temporal variability
of this relationship, referring to the fluctuating extent to which functional
profiles interact with anatomy over time, remains poorly elucidated. Here, we
propose a framework to quantify SFC temporal variability and determine its
neurocognitive map, genetic architecture, and neurochemical basis in 1206
healthy human participants. Results reveal regional heterogeneity in SFC
variability and a composite emotion dimension co-varying with variability
patterns involving the dorsal attention, somatomotor, and visual networks.
The transcriptomic signatures of SFC variability are enriched in synapse- and
cell cycle-related biological processes and implicated in emotion-related dis-
orders. Moreover, regional densities of serotonin, glutamate, γ-aminobutyric
acid, and opioid systems are predictive of SFC variability across the cortex.
Collectively, SFC variability mapping provides a biologically plausible frame-
work for understanding how SFC fluctuates over time to support macroscale
neurocognitive specialization.

The central objective of network neuroscience is to understand how
dynamic neural communication propagates through complex anat-
omy and ultimately contributes to the diverse repertoire of the brain1,2.
This has naturally propelled brain research towards investigating the
intricate relationship between structural and functional neural con-
nections, leading to the emergence of structure-function coupling
(SFC), which aims to reveal the statistical dependence of a brain area’s
function on its underlying structure3.

Historically, most studies have calculated SFC as a static variable,
further examining its relationships with age4, heritability5, and
disease6. However, the human brain is an inherently dynamic system.
In contrast to the anatomically grounded and relatively stable brain
structure, functional connectivity fluctuates across multiple temporal
and spatial scales, giving rise to the rich dynamics of brain SFC7,8. To
this end, it is reasonable to hypothesize that, rather than a static
quantity, the SFC should fluctuate over multiple timescales to support
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flexible reconfiguration and switching among multitudinous brain
systems. Theoretically, the greater diversity in fluctuating patterns of a
given SFC time course, the higher temporal variability exhibited by the
corresponding time course, thereby indexing its fluctuating dynamics.
Whereas no previous study has quantified the temporal variability of
dynamic SFC, reflecting the fluctuating extent to which functional
connections interact with anatomical structures over time. Given that
structure constrains brain functional dynamics during cognitive pro-
cesses, estimating the temporal variability of cortical dynamic SFCmay
be an alternative andmore integrated indicator of the individual brain
functional phenotype, and could therefore potentially be used to
better understand brain-behavior relationships and neurocognitive
alterations in clinical populations.

Hence, in the current work, a computational framework was
developed to quantify the temporal variability of cortical dynamic SFC
using multimodal magnetic resonance imaging (MRI). Firstly, by cal-
culating the element-wise product of all pairs of functional MRI (fMRI)
signals, the edge time series were generated to depict the inter-
regional co-fluctuation magnitude of instantaneous functional
activity9. Meanwhile, the morphometric similarity network (MSN)10,
which serves as a proxy for the brain’s axonal connectivity, was
employed to examine inter-regional structural organization. Then, the
morphometric similarity connectivity of each region was correlated
with the corresponding region’s edge time series at each time point,
yielding the regional dynamic series of SFC. Finally, fuzzy entropy11 was
utilized to quantify the temporal variability of the time-varying SFC
series. Of note, in comparison with traditional measures, such as var-
iance, fuzzy entropyhasbeenproven tobe amore accuratemeasureof
variability, as it is insensitive to datamagnitude and instead reliesmore
on data distribution11. Moreover, fuzzy entropy not only exhibits
stronger relative consistency and less dependence on data length,
implying less bias, but also achieves continuity, freer parameter
selections, and more robustness to noise12. Thus, fuzzy entropy is
potentially more helpful in capturing the inherent dynamic fluctuation
patterns of SFC. Notably, SFC temporal variability integrates high
spatial resolution details of both structure and function, further enri-
ched by fine-grained temporal dynamics, facilitating a more precise
and lightweight delineation of the high-dimensional spatiotemporal
characteristics of human cognition.

Essentially, the remarkable complexity of the human brain arises
from its precise circuitry, structural and cellular diversity, and ulti-
mately from the regulation of its underlying transcriptome13. Never-
theless, MRI-based macroscopic imaging exhibits limited specificity
for capturing the molecular and cellular characteristics of brain
tissues14,15. This has limited the capacity of temporal variability metrics
to elucidate the biological processes driving brain cognition and to
inform mechanistic models of brain diseases. The availability of brain-
wide gene expression atlases (e.g., Allen Human Brain Atlas (AHBA)13)
and the advancement of curated processing pipelines16,17, enable the
reliable identification of transcriptional patterns associated with
macroscale anatomical and functional brain organization16,18. Rather
than reflecting inherited genetic variation, these data capture cell-
type-specific and spatially patterned gene expression profiles, offering
a molecular lens for interpreting macroscale neuroimaging pheno-
types. In addition, chemoarchitecture, i.e., the neurotransmitter
transporter and receptor, represents another important molecular
annotation for clarifying the intricate relationship between brain
structure and function19,20. Elucidating the corresponding transcrip-
tional and chemoarchitectural landscape could be crucial for decoding
the molecular mechanism underlying brain SFC temporal variability.
Whereas, to our current understanding, no previous study to date has
characterized the temporal variability of cortical dynamic SFC; hence,
the underlying molecular mechanisms are, thus far, unknown.

In this work, we explore how macroscopic structure and func-
tion are intertwined over time to affect human cognition or be

modulated by brain-wide gene expression and neurotransmitter
receptors. Specifically, leveraging time- and region-resolved SFC
patterns, we propose a framework to estimate the temporal varia-
bility of cortical dynamic SFC. Results reveal that SFC temporal
variability is spatially organized, with higher variability spanning the
anterior and posterior cortex, while stable SFC is observed in the
intermediate cortex, reflecting the existence of distinct cortical
hierarchies. Additionally, SFC temporal variability distributed in the
dorsal attention, somatomotor, and visual networks is closely linked
to a composite emotion dimension. More interestingly, the tran-
scriptomic organizations of cortical SFC variability are enriched in
synapse- and cell cycle-related biological processes, associated with
excitatory neurons, and consistently implicated in disorders per-
taining to emotion. Finally, we unveil an integrated spatial topo-
graphy of serotonin, glutamate, γ-aminobutyric acid, and opioid
systems that manifest as regionally specialized SFC variability across
the cortex. Together, cortical SFC variability delineates a critical
neuroimaging-derived dimension of human brain operation, wherein
divergent neurotransmitomic, transcriptomic, and cellular sig-
natures are expressed to support SFC fluctuations over time, thereby
regulating cognition specialization.

Results
Study overview
Herein, leveraging multimodal neuroimaging data and behavioral
measures of 1206 participants from the Human Connectome Project
(HCP, S1200 release)21 and 366 participants from the Chinese HCP
(CHCP)22, we first quantified the replicable temporal variability pattern
of cortical dynamic SFC (Fig. 1a). Specifically, we extracted the resting-
state fMRI signals per region of interest (ROI) utilizing the Desikan-
Killiany (D-K) atlas23 (308 ROIs). The temporal unwrapping procedure
was then performed to generate moment-to-moment functional co-
fluctuation matrices with the dimensionality of 308 × 308 × time.
These matrices represent the instantaneous functional co-fluctuation
magnitudes between pairwise ROIs in the form of edge time series
(Step 1 of Fig. 1a). Meanwhile, as displayed in Step 2 of Fig. 1a, the MSN
with the dimensionality of 308 × 308 was constructed based on mul-
timodal morphological features derived from structural MRI (sMRI)
and diffusion MRI (dMRI). Then, each column in the morphometric
similarity matrix was correlated (via Pearson’s correlation) with the
same region’s column in the edge timeseries profile at each timepoint,
generating the regional time-varying SFC series with the dimension-
ality of 308 × time per participant. Fuzzy entropy11 was applied to
quantify the fluctuating dynamics of SFC over time, whereby defined
as the temporal variability of SFC (or referred to as SFC variability; Step
3 of Fig. 1a).

Thereafter, the multivariate relationship between SFC temporal
variability and multiple cognitive and behavioral traits was investi-
gated by partial least squares analysis (PLS; Fig. 1b). By integrating
transcriptomics data from AHBA13 and positron emission tomography
(PET) images collected from 1200+ healthy individuals19, we further
explore the underlying relationships between SFC variability and
brain-wide gene expression (Fig. 1c), along with neurochemical archi-
tecture (Fig. 1d). Herein, the CHCP cohort was used to validate the
reproducibility of cortical SFC temporal variability and the corre-
sponding transcriptome-neuroimaging association.

Hierarchical organization of cortical SFC variability
The grand-averaged cortical SFC variability over all participants is
shown in Fig. 2a. We then applied a threshold strategy to refine the
cortical distribution of SFC variability to specific hierarchical brain
regions. Concretely, the 10% to 50% cortical regions with the largest
(Fig. 2b) and smallest fuzzy entropy (Fig. 2c) were extracted to index
the complementary spatial architectures of SFC variability. Of note,
the temporal fluctuation of regional SFC exhibited significant
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variations across brain regions, with greater variability observed
in the prefrontal and occipital cortex (Fig. 2b), while lower var-
iability was found in frontal and parietal regions (Fig. 2c). Next, to
enhance the generalizability of our findings across different levels
of brain organization, we also allocated ROIs from the D–K atlas
to Yeo 7 functional networks24 and the von Economo cytoarchitec-
tonic classes25. In Fig. 2d, participants showed relatively large

cortical SFC variability in the Yeo limbic network (LN) and visual
network (VN), while that of the somatomotor network (SMN),
dorsal attention network (DAN), and ventral attention network
(VAN) was relatively small. Interestingly, for the von Economo
cytoarchitectonic classes, we found consistently higher cortical SFC
variability in secondary sensory and limbic cytoarchitectonic classes
in Fig. 2e.

Step1: Estimation of edge time series

Step3: Temporal variability analysis of structural-functional coupling

Step2: Estimation of morphometric similarity connectivity
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SFC variability complies with structural and functional
organization
Theoretically, SFC temporal variability can be regarded as the dynamic
perturbations of functional neural activities to the intrinsic structural
framework over time. We thereby investigate to what extent the SFC
variability complies with the corresponding structural connectivity,
functional connectivity, and traditional static SFC configuration. First,
the MSN was constructed based on Fig. 1b, while the functional net-
workwasobtainedusing Pearson’s correlationofpairwise fMRI signals.
To keep consistent with the spatial dimension of cortical SFC varia-
bility, the degree of MSN and the functional network was calculated
and Z-scored separately to exhibit the regional structural connectivity
(Fig. 3a) and functional connectivity (Fig. 3b). In addition, the tradi-
tional static SFC was computed by correlating the morphometric
similarity connectivity and functional connectivity profiles of each
region, followed by Z-scoring (Fig. 3c).

Next, we performed spatial correlations to investigate the
potential associations between SFC temporal variability (Fig. 3d) and
other brain connectome measures, as exhibited in Fig. 3e. Firstly,
consistent with previous findings3, regional structural connectivity
exhibits a significantly positive correlation with functional con-
nectivity (r(306) = 0.65, pspin <0.001; a “spin”-based method26 was
adopted to correct the spatial autocorrelation), supporting the
hypothesis that structural connectome serves as the foundation for
the emergence of functional communications27. Intuitively, the esti-
mation of SFC is directly dependent on morphometric similarity and
functional connectivity, suggesting a close relationship between SFC
and these two variables. However, a significant positive associationwas
only found between SFC and structural connectivity (r(306) = 0.73,
pspin <0.001), while a weak but statistically non-significant positive
correlation was found between SFC and functional connectivity
(r(306) = 0.25, pspin =0.22). Of note, results in Fig. 3e further reveal that

Fig. 1 | Study overview. a Estimating temporal variability of structure-function
coupling (SFC). Step 1: Estimation of edge time series with the dimensionality of
308 × 308 × time via computing the element-wise product of pairwise Z-scored
fMRI signals. Step 2: Estimation of morphometric similarity connectivity with the
dimensionality of 308× 308 based on nine sMRI and dMRI features. Step 3: The
regional time-resolved SFC series, with the dimensionality of 308 × time, is com-
puted by correlating a region’s morphometric similarity and functional co-
fluctuation profile at each time point; subsequently, the temporal variability of
dynamic SFC is quantified by fuzzy entropy. b Behavioral partial least squares (PLS)

analysis. PLS is adopted to delineate multivariate relationships between SFC
variability and 59 behavioral measures spanning multiple domains of cognition,
emotion, motor, sensory, alertness, and personality. c Transcriptional decoding of
SFC temporal variability. Imaging-transcriptomic associations are revealed by PLS,
and enrichment analyses are conducted using PLS1 genes. d Neurotransmitter
analysis of SFC temporal variability. Spatial correlations between SFC variability
and neurotransmitter densities are examined, and a multiple linear regression
model is fitted to predict SFC variability from receptor distributions.
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Fig. 2 | Hierarchical cortical SFC variability distribution. a Topographic dis-
tribution of brain SFC variability based on the D–K atlas. b Hierarchical distribu-
tions of brain SFC variability with the 10% to 50% largest fuzzy entropy.
c Hierarchical distributions with the 10% to 50% smallest fuzzy entropy. d The
distribution of SFC variability over regions grouped into YEO 7 functional subnet-
works. VAN-ventral attention network, LN-limbic network, DAN-dorsal attention
network, FPN-frontoparietal network, SMN-somatomotor network, DMN-default

mode network, VN-visual network. eThedistributionof SFC variability over regions
grouped into 7 von Economo cytoarchitectonic classes. PMC-primary motor class,
AC1-association class 1, AC2-association class 2, SSC-secondary sensory class, PSC-
primary sensory class, LC-limbic class, IC-insula class. Boxplots represent the
median andupper/lowerquartilewithwhiskers extending to themost extremedata
point within 1.5 interquartile ranges above/below the quartiles. Dots show data
from n = 991 participants. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-025-63000-5

Nature Communications |         (2025) 16:7623 4

www.nature.com/naturecommunications


SFC variability was significantly negatively related to structural con-
nectivity (r(306) = −0.68, pspin < 0.001), functional connectivity
(r(306) = −0.43, pspin =0.01), and even the SFC (r(306) = −0.55,
pspin <0.001x). These observations indicate that SFC variability effec-
tively integrates the complex spatiotemporal characteristics of the
cerebral cortex, thereby providing a more comprehensive repre-
sentation of brain structure and dynamic function compared to con-
ventional static SFC. Additionally, analysis of the relationship between
SFC temporal variability and fMRI autocorrelation revealed a sig-
nificant negative correlation (r(306) = -0.69, pspin = 1.93×10−44; Supple-
mentary Results 1 and Fig. S1), suggesting that SFC temporal variability
may reflect underlying fMRI autocorrelation.

SFC variability represents a composite dimension of
emotion domain
Referred to as the cornerstone of cognitive processes and a diverse
repertoire of behaviors, there is an escalating acknowledgment of the
interconnections between distributed brain regions in terms of their
structural organization and functional dynamics3,4. Herein, PLS was
thereby applied to examine themultivariate relationships betweenSFC
variability and 59 available behavioral measures (Table 1) in the HCP
cohort. The quantity of covariance accounted for by each latent
component is illustrated in Fig. 4a. Of note, after conducting

permutation testing with FDR correction, only the first latent compo-
nent remained statistically significant (pFDR = 5.60 × 10−3), which
explained 19.42% of SFC variability-behavior covariance (Fig. 4a).
Meanwhile, SFC temporal variability and behavioral composite scores
(Fig. 4b) shown a significant positive correlation (r(989) = 0.14,
p = 1.61 × 10−5). To further validate the robustness of the first latent
component, insteadof regressingout age and sex, thesevariableswere
incorporated into the behavioral data for PLS analysis. The results
remained largely consistent, as evidenced by the high correlations
between the salience (SFC variability salience: r =0.99, p = 2.89 × 10−74;
behavioral salience: r =0.99, p = 8.39 × 10−242; Supplementary Fig. S2)
of the original PLS and PLS with age and sex added into the beha-
vioral data.

Thereafter, to assess the contribution of a given SFC variability or
behavior to the first latent component, Pearson’s correlations between
the original SFC variability (or behavioral measure) and the corre-
sponding composite scoreswere computed28. A large correlation value
(i.e., large weight, positive or negative) for a given SFC variability or
behavioral measure indicates a greater contribution of the SFC varia-
bility (or behavior) to the first latent component. Figure 4c illustrates
the associations between the behavioral composite score of the first
latent component and 30 significant behavioral traits at the group
level. The detailed Pearson’s correlation coefficients of all 59
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Table 1 | Behavioral measures of the HCP cohort (n = 991)

Domain Subdomain Measure Name CC SD p

Alertness Cognitive Status Mini-Mental Status Exam Total Score −0.10 0.05 0.03

Sleep Pittsburgh Sleep Quality Index Total Score 0.45 0.05 <0.001*

Subjective sleep quality Pittsburgh Sleep Quality Index Component 1 Score 0.34 0.04 <0.001*

Sleep latency Pittsburgh Sleep Quality Index Component 2 Score 0.35 0.04 <0.001*

Sleep duration Pittsburgh Sleep Quality Index Component 3 Score 0.15 0.05 <0.001*

Habitual sleep efficiency Pittsburgh Sleep Quality Index Component 4 Score 0.17 0.05 <0.001*

Sleep disturbances Pittsburgh Sleep Quality Index Component 5 Score 0.22 0.04 <0.001*

Use of sleep medications Pittsburgh Sleep Quality Index Component 6 Score 0.15 0.04 <0.001*

Daytime dysfunction Pittsburgh Sleep Quality Index Component 7 Score 0.43 0.04 <0.001*

Cognition Episodic memory Picture Sequence Memory Test 0.03 0.05 0.62

Executive function/Cognitive
flexibility

Dimensional Change Card Sort Test 0.03 0.06 0.61

Executive function/inhibition Flanker Inhibitory Control and Attention Test 0.04 0.05 0.45

Fluid intelligence Penn Progressive Matrices 0.03 0.06 0.62

Language/reading decoding Oral Reading Recognition Test 0.03 0.07 0.62

Language/vocabulary
comprehension

Picture Vocabulary Test −0.02 0.06 0.72

Processing speed Pattern Comparison Processing Speed Test −0.01 0.05 0.77

Self-regulation/ impulsivity Delay Discounting: Area Under the Curve for Discounting of $200 −0.03 0.05 0.51

Self-regulation/ impulsivity Delay Discounting: Area Under the Curve for Discounting of $40,000 −0.01 0.05 0.82

Spatial orientation Variable Short Penn Line Orientation Test 0.02 0.06 0.76

Sustained attention Short Penn Continuous Performance Test_Sensitivity 0.01 0.05 0.77

Sustained attention Short Penn Continuous Performance Test_Specificity −0.05 0.05 0.37

Verbal episodic memory Penn Word Memory Test −0.07 0.05 0.21

Working memory List Sorting Working Memory Test −0.04 0.06 0.50

Fluid cognition Dimensional Change Card Sort Test, Flanker, Picture Sequence Memory, List
Sorting, and Pattern Comparison measures

0.12 0.07 0.10

Early childhood cognition Picture Sequence Memory, Dimensional Change Card Sort Test, Flanker, and Pic-
ture Vocabulary

0.14 0.08 0.07

Cognitive function All NNIH Toolbox Cognition measures 0.12 0.08 0.13

Crystallized cognition Picture Vocabulary and Reading Recognition measures 0.10 0.07 0.18

Emotion Emotion recognition Penn Emotion Recognition Test 0.01 0.05 0.91

Anger Anger-Affect Survey 0.68 0.03 <0.001*

Hostility and cynicism Anger-Hostility Survey 0.56 0.03 <0.001*

Aggression Anger-Physical Aggression Survey 0.33 0.04 <0.001*

Fear and anxious misery Fear-Affect Survey 0.67 0.03 <0.001*

Somatic symptoms of anxiety Fear-Somatic Arousal Survey 0.34 0.04 <0.001*

Sadness Sadness Survey 0.74 0.02 <0.001*

Life satisfaction General Life Satisfaction Survey −0.58 0.04 <0.001*

Meaning and purpose Meaning and Purpose Survey −0.55 0.04 <0.001*

Positive affect Positive Affect Survey −0.61 0.04 <0.001*

Friendship Friendship Survey −0.56 0.04 <0.001*

Loneliness Loneliness Survey 0.71 0.03 <0.001*

Hostility Perceived Hostility Survey 0.55 0.03 <0.001*

Rejection Perceived Rejection Survey 0.68 0.03 <0.001*

Emotional support Emotional Support Survey −0.63 0.04 <0.001*

Instrumental support Instrumental Support Survey −0.47 0.04 <0.001*

Stress Perceived Stress Survey 0.75 0.02 <0.001*

Self-efficacy Self-Efficacy Survey −0.45 0.04 <0.001*

Motor Endurance 2min walk test 0.00 0.05 0.98

Locomotion 4-meter walk test −0.04 0.04 0.40

Dexterity 9-hole Pegboard −0.10 0.05 0.03

Strength Grip Strength Dynamometry −0.03 0.04 0.39

Personality Agreeableness Five Factor Model −0.41 0.04 <0.001*

Openness Five Factor Model −0.01 0.05 0.80

Conscientiousness Five Factor Model −0.39 0.04 <0.001*
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behavioral traits are reported in Table 1. Specifically, the first latent
component’s behavioral composite score was most associated with
individual emotion domains, including social relationships (stress,
emotional support, friendship, loneliness, rejection), negative affect
(sadness, anger, fear, and anxious misery), and psychological well-
being (life satisfaction, meaning, and purpose). Namely, a higher
behavioral composite score was linked to poorer emotional status,
such as perceived stress, sadness, loneliness, perceived rejection,
anger, fear, and anxious misery. Figure 4d shows regions exhibiting
significant correlations between the first latent component’s SFC
variability composite scores and the SFC variability distribution
(p < 0.001, Bonferroni corrected). This indicates that a higher SFC
variability composite score is associatedwith increased SFC variability,
which is widely distributed throughout the brain. Uncorrected

correlations between participants’ SFC variability distribution and
their SFC variability composite scores are exhibited in Supplementary
Fig. S3. Figure 4e displays the average correlations of significant SFC
variability within subnetworks. A higher SFC variability composite
scorewas found to be related to elevated levels of SFC variability in the
DAN, SMN, and VN. Supplementary Table S1 further presents the top
20 ROIs with the highest correlations, localized at the fusiform, pre-
central, paracentral, postcentral, and superior parietal gyrus that
consistently clustered within the SMN, DAN, and VN.

Transcriptomic decoding of cortical SFC variability
Gene expression plays an essential role in shaping the functional and
structural organization of the cerebral cortex17; however, it remains
unclear whether the topologically distinctive and functionally

Table 1 (continued) | Behavioral measures of the HCP cohort (n = 991)

Domain Subdomain Measure Name CC SD p

Neuroticism Five Factor Model 0.64 0.03 <0.001*

Extraversion Five Factor Model −0.43 0.04 <0.001*

Sensory Audition Words in Noise 0.06 0.05 0.23

Olfaction Odor Identification Test 0.10 0.04 0.01

Pain Pain Intensity and Interference Surveys 0.27 0.04 <0.001*

Taste Regional Taste Intensity Test 0.03 0.04 0.46

Contrast sensitivity Mars Contrast Sensitivity −0.03 0.02 0.21

The correlation coefficient (CC) denotes Pearson’s correlation between participants’ behavioral measures and their behavioral composite scores. These correlations show the contribution of each
behavioralmeasure to thefirst latent component, alongwith their bootstrap-estimated standarddeviations (SD). Thep-valueswere corrected byFDR andweredeterminedbased onone-sided tests.
Asterisk indicates correlations with significant bootstrapped Z scores (pFDR < 0.05).

Fig. 4 | SFC variability represents a composite dimension of the emotion
domain. a The amount of covariance accounted for by each latent component.
After conducting permutation testing with FDR correction, only the first latent
component remained statistically significant (n = 5000, pFDR = 5.60 × 10−3, one-
sided), which explained 19.42% of SFC variability-behavior covariance. b Significant
association between behavioral and SFC variability composite scores in the first
latent component (Pearson’s r(989) = 0.14, two-sided, p = 1.61 × 10−5). c Associations
between behavioral composite scores and the corresponding behavioral traits.
Error bars denote bootstrapped standard deviation with 1000 bootstrap estima-
tions (n = 1000). The correlation coefficients were divided by their estimated

standard deviation to calculate the Z-scores, which were further transformed into
p-values and adjusted for multiple comparisons using the FDR correction
(pFDR<0.05). d Significant associations between SFC variability composite scores
and the corresponding SFC variability distribution. The correlation coefficients
were divided by their estimated standard deviation to calculate the Z-scores, which
were further transformed into p-values and adjusted for multiple comparisons
using the Bonferroni correction (p <0.001). e Associations between SFC variability
composite scores and the SFC variability distribution that averaged within Yeo 7
functional subnetworks. Source data are provided as a Source Data file.
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specialized SFC variability is associated with a unique transcriptional
signature. To reveal this, we utilized the AHBA to obtain brain-wide
patterns of gene expression (Fig. 5a) and conducted PLS regression
analysis to detect the predominant gene expression organization. The
first component of PLS (PLS1; Fig. 5b) depicted gene expression pat-
tern that ismostly associatedwith cortical SFC variability distributions,
which explained 24.83% of the variance in SFC variability (pspin< 0.001;

Fig. 5c). Meanwhile, significant spatial association between the SFC
temporal variability and the PLS1 was observed (r(150) = 0.50,
pspin = 2.6 × 10−3; Fig. 5d). Furthermore, by utilizing a univariate one-
sample Z test, we ranked these candidate genes based on normalized
PLS1 weights, identifying 947 negatively (PLS1-: Z < -3, pFDR <0.05) and
835 positively weighted genes (PLS1 + : Z > 3, pFDR <0.05; Fig. 5e). Of
note, genes exhibiting negative PLS weights displayed a negative
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spatial association between their expressions and SFC variability map
(e.g., ACHE: r(150) = −0.42, pspin =0.02), while those with positive PLS
weights exhibited a positive spatial association between their expres-
sions and SFC variability map (e.g., PLK2: r(150) = 0.44,
pspin = 4.0×10−3; Fig. 5f).

To explore thepotential impact ofmolecular biological signatures
on the distribution of cortical SFC variability, we utilized Metascape29

to align PLS1+ and PLS1- genes with the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways and gene ontology (GO) biological
processes, respectively. After adjusting for enriched terms
(pFDR <0.01) and eliminating discrete enrichment clusters, the PLS1+
gene list exhibited significant enrichment in 13GObiological processes
(Fig. 5g, h), such as “regulation of postsynapse organization”, “synapse
organization”, and “negative regulation of cell cycle”, and one KEGG
pathway “p53 signaling pathway”. Supplementary Table S2 lists all GO
Biological Process andKEGGPathway enrichments from the PLS+ gene
set. Additionally, the PLS1 gene list exhibited a significant enrichment
in GO biological processes, including “mitochondrion organization”,
“peptidemetabolic process”, and “protein catabolic process”, together
with KEGG pathways, such as the “Carbon metabolism” and “Bio-
synthesis of cofactors” (pFDR < 0.01; Supplementary Fig. S4 and
Table S3).

SFC variability-related genes enriched for cell classes and
cortical layers
We proceeded to investigate whether there was an enrichment of
genes associated with specific cell types and cortical layers among

PLS + and PLS− genes. Firstly, we observed that genes with positive
PLS1 weights were significantly expressed in excitatory neurons
(n = 120, pperm < 0.001; Fig. 6a). Concurrently, genes specific to inhi-
bitory neurons (n = 72, pperm < 0.001) were overrepresented in the
PLS1- genes of cortical SFC variability (Fig. 6b). In line with above
findings, enrichment analysis of these overlapped genes uncovered
that cortical SFC variability was significantly enriched in biological
processes associated with excitatory and inhibitory neurons (Supple-
mentary Fig. S5). Thereafter, we associated the PLS1 gene list with
distinct cortical layers by utilizing the laminar gene markers30. As
illustrated in Fig. 6c, the PLS1+ genes exhibited a significant enrich-
ment in layer III (n = 41, pperm < 0.001), layer IV (n = 44, pperm < 0.001),
and layer V (n = 21,pperm < 0.001),whereas the PLS1+ gene list showed a
significant enrichment in layer II (n = 48, pperm <0.001).

SFC variability-related genes enriched for disease
candidate genes
To assess the clinical relevance of genes linked to SFC variability, we
further examined whether the PLS + and PLS− gene lists exhibited
enrichment for those implicated in the pathogenesis of brain disease.
To achieve this, the WebGestalt31 was applied to the PLS1+ and PLS1–
gene lists, respectively. The findings revealed a significant overlap
between PLS1+ genes and those implicated in emotional disease,
encompassing mood disorders, schizophrenia, and autism spectrum
disorder (Fig. 6e). Additionally, significant overlap was also observed
between genes associated with mitochondrial diseases and shock in
relation to the PLS1- genes (Fig. 6f).

Fig. 5 | Transcriptomic decoding of cortical SFC variability. a Topographic dis-
tribution of cortical SFC variability in the left hemisphere. b Cortical distribution of
regional PLS1 scores in the left hemisphere. c Explained variance for the first 20
components derived from the PLS regression analysis. The significance of the var-
iance explainedby each PLS componentwas assessed by the spin test (n= 5000, one-
sided). d Correlation between cortical SFC variability and PLS1 scores (Pearson’s
r(150) = 0.50, pspin= 2.6 × 10−3). The p-value was not corrected for multiple compar-
isons and was determined based on a one-sided test. e Ranked PLS1 loading. f Genes
exhibiting negative PLS weights displayed a negative spatial association between

their expressions and SFC variability map (e.g., ACHE: Pearson’s r(150) = -0.42,
pspin=0.02), while those with positive PLS weights exhibited a positive association
between their expressions and SFC variability map (e.g., PLK2: Pearson’s r(150) = 0.44,
pspin= 4.0× 10−3). All p-values were derived from spin tests and adjusted by FDR, and
were determined based on one-sided tests. g Enrichment analysis of genes tran-
scriptionally associated with cortical SFC variability. All obtained pathways were
adjusted for multiple comparisons using the FDR correction (pFDR <0.01). h The
intra- and inter-cluster similarities of enriched terms are visualized by theMetascape
enrichment network. Source data are provided as a Source Data file.
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Relationship between SFC variability and neurotransmitter
systems
To obtain brain neurotransmitter receptor densities, we compiled
PET scans of 9 neurotransmitter systems, encompassing opioid,
cannabinoid, histamine, γ-aminobutyric acid (GABA), glutamate,
acetylcholine, serotonin, norepinephrine, and dopamine (Supple-
mentary Table S4)19. A tracer map was generated by averaging the
data from participants within each PET study, which was then seg-
mented into the D-K atlas and subsequently standardized using
z-scores. Spatial correlations between brain SFC variability and
neurotransmitter receptor distributions were examined. After the
“spin”-based spatial permutation testing with FDR correction,
we observed that SFC temporal variability was significantly

negatively related to serotonin receptors (5-HT1A: r(306) = −0.62,
pspin-FDR < 0.001, 5-HT2A: r(306) = −0.52, pspin-FDR < 0.001) and trans-
porters (5-HTT: r(306) = −0.44, pspin-FDR < 0.001), together with
metabotropic glutamate receptor 5 (mGluR5: r(306) = −0.55,
pspin-FDR < 0.001), GABA type A (GABAA: r(306) = −0.45, pspin-
FDR = 0.001) receptor, dopamine (D1: r(306) = −0.55, pspin-FDR < 0.001),
and μ-opioid receptor (MOR: r(306) = −0.55, pspin-FDR = 0.001) in
Fig. 7a. Detailed statistical result of each neurotransmitter map with
SFC variability are reported in Supplementary Table S5.

Thereafter, employing a multiple linear regression model, we
tested whether neurotransmitter receptor and transporter densities
(i.e., 5-HT1A, 5-HT2A, 5-HT4, D1, mGluR5, MOR, and GABAA) could serve
as predictors for the cortical distribution of SFC variability. The
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variability. Histograms display the frequency distributions of correlation coeffi-
cients from 5000 permutation tests, with red bars indicating the actual Pearson’s
r-values. b Prediction of SFC variability based on brain receptor distributions
(Adjusted R2 = 0.42, pspin = 6.53 × 10−40). The p-value was derived from the spin test
and determined based on a one-sided test. c The distribution of Pearson’s cor-
relations between predicted and actual SFC variability using a distance-

dependent cross-validation method. This method selects the 75% of regions
closest to a source region as a training set and the remaining 25% of regions as the
test set, for a total of 308 repetitions. Boxplots represent the median and upper/
lower quartile with whiskers extending to the most extreme data point within 1.5
interquartile ranges above/below the quartiles. d Dominance analysis. The con-
tribution percentage per neurotransmitter was determined by normalizing its
dominance in relation to the overall model fit (adjusted R2). Source data are
provided as a Source Data file.
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model significance was evaluated by a “spin”-based permutation test
(5000 repetitions). Figure 7b exhibits a close and statistically sig-
nificant fit between cortical SFC variability and 5-HT1A, 5-HT2A, 5-HT4,
D1, mGluR5, GABAA, and MOR densities (Adjusted R2 = 0.42,
pspin = 6.53×10-40). Next, we cross-validated the regression model
using a distance-dependent method32. The distribution of Pearson’s
correlations for 308 out-of-sample cross-validations is shown in
Fig. 7c. The median of the cross-validated Pearson’s correlation
between the predicted and actual SFC variability was r = 0.60. Addi-
tionally, dominance analysis33 was adopted to identify the relative
contribution of each neurotransmitter receptor/transporter towards
the overall model fit. Results in Fig. 7c demonstrate that the spatial
distribution of the serotonin neurotransmitter system, encompass-
ing 5-HT1A, 5-HT2A, and 5-HT4, largely contributes (over 85%) to the fit
between neurotransmitter systems and cortical SFC variability.

Robustness and sensitivity analyses
We further validated the cortical SFC variability pattern and its
underlying transcriptional relations in another independent cohort,
i.e., the CHCP cohort. Firstly, the spatial agreement between the SFC
variability map derived from the CHCP cohort (Fig. 8a) and that of
the HCP cohort was observed (r(306) = 0.64, pspin = 2.15 × 10−37;
Fig. 8b). PLS regression was then performed to validate the tran-
scriptional enrichments of the SFC variability map. The findings
reveal that PLS1 (Fig. 8c) accounted for 20.77% of the variance in SFC
variability of the CHCP cohort (pspin = 0.001), close to that of the HCP
cohort. Likewise, significant spatial coherency between the PLS1 and
cortical SFC variability in the CHCP cohort was observed
(r(150) = 0.46, pspin < 0.001; Supplementary Fig. S6). In addition, 646
positively weighted genes (PLS1 + , Z > 3) and 891 negatively weigh-
ted genes (PLS1-, Z <− 3) were identified in the CHCP cohort. Then,
using a multi-gene-list meta-analysis29, we validated that the enrich-
ment pathways on PLS1+ (PLS−) genes derived from the 2 indepen-
dent cohorts were highly overlapped. The shared ontology terms for
PLS1+ genes primarily focused on “regulation of postsynapse orga-
nization”, “synapse organization”, and “negative regulation of cell
cycle” etc. (Fig. 8d). Additionally, the PLS1– genes of both HCP and
CHCP cohorts were consistently enriched for GO biological pro-
cesses including “mitochondrion organization”, “peptide metabolic
process”, and “protein catabolic process”, together with KEGG
pathways, such as the “Carbon metabolism” and “Biosynthesis of
cofactors” (Fig. 8e).

Eventually, we performed sensitivity analyses to evaluate whe-
ther our results would be robust under several methodologies.
Firstly, given that brain structural organization can also be evaluated
using white matter network (WMN) and microstructural profile
covariance network (MPCN)34, WMN- and MPCN-derived SFC varia-
bility were also estimated. As exhibited in Supplementary Results 2
and Fig. S7, WMN-derived SFC variability demonstrated a sig-
nificantly moderate degree of spatial correlation with MSN-derived
SFC variability (r(306) = 0.43, pspin < 0.001). Then, PLS was applied to
examine the multivariate relationships between WMN-derived SFC
variability and behavioral measures. As shown in Supplementary
Results 2 and Fig. S8, beyond the emotion domain, the first latent
component’s behavioral composite score exhibited stronger asso-
ciations with cognition and alertness. When further employing PLS
regression to examine the relationship between WMN-derived SFC
variability and transcriptomic variations, none of the PLS compo-
nents reached statistical significance (pspin > 0.05; Supplementary
Results 2 and Table S6).

As for MPCN-derived SFC variability, Supplementary Results 3
demonstrated a spatial distribution (Supplementary Fig. S9) and
behavioral covariance (Supplementary Fig. S10) that were more
closely aligned with MSN-derived SFC variability. When further

investigating transcriptome-neuroimaging associations, the PLS1 can
explain 16% of the variance in MPCN-derived SFC variability
(pspin = 0.02; Table S7). Moreover, using a multi-gene-list meta-
analysis29, we observed that the gene lists and enrichment pathways
of MPCN- and MSN-derived SFC variability were highly overlapping
(Supplementary Fig. S11).

Although the tvSFC was calculated based on morphometric
similarity and functional profiles of the same region, edge-level spatial
proximity can lead to artificially inflated SFC values for regions that are
closer to others. As previously demonstrated, fuzzy entropy is insen-
sitive to the data magnitude but rather depends more on the data
distribution11, enabling it to effectively capture the intrinsic dynamic
fluctuation patterns of a given time series, thereby can effectively
mitigating the consistent impact of edge-level spatial proximity on the
magnitude of SFC across all time points. To further validate this, fol-
lowing previous studies35,36, we calculated tvSFC by utilizing the partial
correlation between morphometric similarity and functional co-
fluctuation connectivity, while regressing the shared relationship
with anatomical distance. Fuzzy entropy was then applied to generate
the SFC variability distribution. As expected, SFC temporal variability
maps with and without regression of Euclidean distance exhibited
extremely strong spatial consistency (r(306) = 0.98, pspin <0.001; Sup-
plementary Result 4 and Fig. S12).

Discussion
Our multimodal investigation of complex functional dynamics that
unfold over the intrinsic structural backbone illuminates how the
temporal variability of cortical SFC was supported by transcriptomic
and cellular substrates, as well as chemoarchitecture, to facilitate
neurocognitive processing. Specifically, leveraging time- and region-
resolved SFC coupling patterns, we quantified how much cortical SFC
dynamically fluctuates over time, reflecting its temporal variability.We
then provided converging evidence highlighting the crucial role of
cortical SFC variability in the domain of brain emotion, and addition-
ally elucidated its neurobiological underpinnings at multiple levels by
integrating transcriptomic, cellular, and neurotransmitter evidence.
Our discoveries offer a new outlook on the temporal variability of
dynamic SFC in brain function, with underlying implications for com-
prehending cognitive processes and diseases at both macroscopic
architectural and microscopic transcriptomic levels.

By introducing fuzzy entropy to quantify the degree of dynamic
SFC fluctuation over time, we revealed that SFC temporal variability
is highly heterogeneous. Specifically, the prefrontal and occipital
gyrus exhibited more sizable SFC fluctuations that clustered mainly
in visual and limbic subsystems; while SFC of the dorsal and ventral
attention subsystems, which dispersed in extensive frontal and par-
ietal regions, were more stable over time. More interestingly, we
revealed that a composite emotion domain, encompassing social
relationships, negative affect, and psychological well-being, was
particularly associated with the spatial pattern of cortical SFC
variability in widespread fusiform, precentral, paracentral, post-
central, and superior parietal gyrus within the SMN, DAN, and VN
subsystems. As reported, the fusiform and precentral gyrus play
crucial roles in processing emotional information37,38. Meanwhile,
emotion and action mutually interact with each other in a crucial
way, as evidenced by functional neuroimaging research investigating
how emotions influence brain regions associated with motor func-
tions. For example, Portugal et al39. discovered that motor-related
regions, such as the precentral gyrus, exhibit context-dependent
activation when processing emotional stimuli. In addition, attention
modulates emotion and related systems such as face recognition and
reward40. Both the involvement of spatial attention and feature-
based attention in the dorsal attention network are essential for
emotion regulation41.
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Thereafter, transcriptome signatures were unveiled by lever-
aging the intricate topographic distribution of brain SFC temporal
variability. As illustrated, brain genes exhibited differential expres-
sion in regions characterized by varying degrees of temporal varia-
bility, wherein genes with overexpression in regions displaying high
temporal variability (PLS1+) showed enrichment for terms associated
with synapses including “regulation of postsynapse organization”
and “synapse organization”, as well as cell cycle-related biological
processes including “negative regulation of cell cycle” and

“regulation of DNA metabolic process”. In fact, the classic mechan-
ism for neural cell communication in the central nervous system is
represented by synapses. Synaptic transmission necessitates intri-
cate structural specializations in both postsynaptic and presynaptic
cells, while the dynamic architecture of synapses allows for highly
modifiable signal transmission42. Thus, genes enriched for synapse-
related terms may result in and reshape the highly regionally spe-
cialized SFC variability. In addition, the regulation of cellular meta-
bolism during cell cycle progressionmay hold profound implications

Fig. 8 | Reproducibility of SFC variability and corresponding transcriptomic
profile. a Cortical SFC variability map in the CHCP cohort. b Pearson’s correlation
analysis for 308 regions of D-K atlas between HCP and CHCP cohorts (Pearson’s
r(306) = 0.64, pspin = 2.15 × 10−37, one-sided). c Weighted gene expression map of

PLS1 for the CHCP cohort. d Validation of transcriptional enrichments of SFC
variability with PLS1 +weights. e Validation of transcriptional enrichments of SFC
variability with PLS1− weights. Circos plot depicting the overlap of genes between
HCP and CHCP cohort. Source data are provided as a Source Data file.
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for understanding the biology of highly specialized cell types. The
regulation of the cell cycle exerts critical control over region-specific
rates of neuronal generation and the formation of cytoarchitectonic
maps43. In this regard, our results consistently reveal that SFC
variability is specifically related to genes overexpressed in excitatory
neurons of cortical layers III, IV, and V. In fact, the mediation of
intricate emotional changes heavily relies on excitatory transmission,
which may represent the ultimate shared pathway for therapeutic
interventions targeting mood disorders44. Meanwhile, disruption of
synaptic communication is closely linked to emotional disturbances
observed in neurological conditions such as schizophrenia, depres-
sion, and autism45. As such, the clinical significance of PLS1+ genes
further demonstrated that genes enriched for synapse- and cell-
cycle-related biological processes were related to multiple emotion-
related diseases, including mood disorders, schizophrenia, and aut-
ism spectrum disorder.

On the other hand, the PLS1− gene list exhibited enrichment in
multiple KEGG pathways and GO biological processes, including
“mitochondrion organization”, “regulation of mitochondrion orga-
nization”, “carbon metabolism”, and “cellular homeostasis”. As we
know, mitochondria play a crucial role in ensuring survival. Apart
from their role in energy metabolism, mitochondria also play a vital
part in various biochemical and signaling pathways essential for
maintaining brain homeostasis, such asmetabolic pathways, cellular
signaling, generation of free radical species, apoptosis, and lipid
synthesis46. In particular, mitochondria are commonly acknowl-
edged as key players in facilitating allostasis, which refers to the
intricate interplay among autonomic, metabolic, and immune sys-
tems to maintain cellular homeostasis under stressful conditions47.
Meanwhile, considering its crucial function within the human body,
abnormalities in mitochondrial performance can lead to cata-
strophic outcomes. It is well known that deleterious mutations in
mitochondrial genes could lead to mitochondrial diseases, in which
epilepsy often occurs as one of the main clinical features48. Hence,
when exploring the enrichment analysis of brain disease, the PLS1−
genes overexpressed in low SFC variability areas consistently and
significantly overlapped with the genes associated with mitochon-
drial diseases, stress, and shock.

The distribution of neurotransmitter receptors and transporter
molecules across the corticalmantle, known as chemoarchitecture, is
an equally crucial facet of brain neurobiology alongside cellular
composition. The level and functional status of neurotransmitters
will, in turn, affect the connection pattern and information transfer
efficiency between brain structures by modulating neuronal excit-
ability, thereby potentially playing a key role in the dynamic fluc-
tuations of SFC. As expected, spatial correlation analyses
demonstrated a significant association between SFC variability and
cortical receptor distribution, suggesting that the interplay between
structural and functional aspects heavily relies on the underlying
chemoarchitecture20. More importantly, our study reveals that cor-
tical SFC variability can be attributed to the overlapping distributions
of various neurotransmitter systems, including serotonin (55-HT1A,
5-HT2A, 5-HT4), glutamate (mGluR5), GABA (GABAA), and opioid
(MOR). This observation aligns with the notion that the cortical
receptome exhibits similar organizational characteristics to those
found in brain functional and structural anatomy20. In fact, the pre-
vious study has identified the simultaneous release of multiple
neurotransmitters49. For instance, the synaptic flexibility can be sig-
nificantly enhanced when GABA is released in conjunction with other
co-transmitters like glutamate50. Moreover, neurotransmitter recep-
tors drive neuronal excitability and synaptic plasticity, shape
network-wide communication, and modify neural states that are
underpinned by intrinsic anatomy51, thereby potentially regulating
the temporal variability of brain SFC.

As demonstrated, the proposed SFC variability method exhibits
robustness across various structural measurement techniques, pro-
vided that inter-regional structural relationships are reliably quanti-
fied. However, due to several long-standing technical limitations52,53,
WMN might not be ideal for whole-brain connectome mapping,
thereby resulting in the suboptimal estimation of SFC variability as
demonstrated. AlthoughMPCN- andMSN-derived SFC variability yield
highly consistent results, future research should be guided by the
specific hypothesis under investigation when choosing between MSN
and MPCN for estimating SFC variability. Specifically, MSN is well-
suited for investigating structural organizations characterized by
multimodal macrostructural MRI phenotypes, whereas MPCN is more
appropriate for studies hypothetically motivated by lamina-specific
aspects of cortical architectonics and connectivity54. Additionally, in
contrast to time-varying network analysis55, which examines the for-
mation, dissolution, or reconfiguration of inter-regional functional
interactions at an arbitrarily high temporal resolution, the temporal
variability approach primarily focuses on quantifying the extent to
which moment-to-moment neural activity fluctuates. Temporal varia-
bility analysis emphasizes within-region signal dynamics while time-
varying network analysis focuses on between-region interaction
dynamics. These two methods offer complementary perspectives for
advancing neuroscience research. Moreover, the temporal variability
method can also be extended for application in task-related states.
Specifically, when the temporal resolution of functional signals is
sufficiently high (e.g., electroencephalogram), this method can cap-
ture single-trial variability under a given stimulus condition. For fMRI,
which exhibits relatively lower temporal resolution, this method can
still be adapted to assess trial-to-trial brain variability across repeated
task blocks.

Our study had several limitations. First, the correlation between
behavioral and SFC variability composite scores in the first latent
component is generally weak, and the interpretability of the PLS
results should be taken with caution. In addition, since the behavioral
data in the CHCP database are not publicly accessible, it is not feasible
to conduct further verification of the behavioral PLS results. In future
works, more effort will be put into further validating our findings, as
well as improving the generalization of thesemultivariate relationships
between SFC variability and behavioralmeasures. Second, considering
that significant genes were identified not through correlations with
spatially defined phenotypes but via amultivariate PLS framework, the
strategy proposed by Fulcher et al56., which is robust for addressing
spatial autocorrelation biases in gene category enrichment analysis,
may not be fully applicable57. In this regard, it remains uncertain
whether such bias influences the current results, thereby underscoring
theneed for future research todevelopmethods capable of addressing
this issue.

Methods
Participants
This study enrolled 1206unrelatedparticipants from the S1200 release
of HCP21. We then excluded participants if the following data were
unavailable: a complete sMRI scan, dMRI scan, and 3 T resting-state
fMRI scan. The CHCP cohort22 included 366 native Chinese healthy
participants with complete multimodal neuroimaging data. The HCP
and CHCP cohorts obtained approval from the Institutional Review
Board of Washington University and Peking University, respectively.
All participants provided their written informed consent. After quality
control, 991 participants in the HCP cohort and 318 participants in the
CHCP cohort with complete multimodal neuroimaging data were
retained. Please refer to Supplementary Fig. S13 for the participant
numbers corresponding to each stage of the study. The demographic
characteristics of all included participants are provided in Supple-
mentary Table S8.
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Multimodal data acquisition
Participants in the HCP cohort underwent scanning on a 3 T MR
scanner equipped with a standard head coil consisting of 32 channels
(ConnectomeSkyra, Siemens,Germany). TheCHCPcohort’sMRI scans
were obtained using a 3 T Siemens Prisma scanner. Please refer to
Supplementary Tables S9 and S10 for the detailed MRI acquisition
parameters of both cohorts. In addition, the HCP data acquisition
protocols are available at the HCP S1200 ReleaseManual58, while those
of the CHCP cohort are available in22.

MRI preprocessing
Using FreeSurfer v6.0, we preprocessed the sMRI scans in surface-
based space. Specifically, we reconstructed the cortical surface by
skull stripping, brain tissue segmentation, separation of hemi-
spheres and subcortical structures, as well as construction of gray/
white interfaces and pial surfaces59,60. The dMRI was preprocessed
utilizing the FMRIB Software Library v6.0 (FSL v6.0)61 package.
Firstly, the dMRI scans were subjected to correction for distortions
caused by eddy currents and head movement. Subsequently, the
diffusion tensor model was estimated utilizing a linear least-squares
fitting approach.

TheData Processing&Analysis of Brain Imaging v7.0 (DPABI v7.0)
toolkit was employed for the pre-processing of fMRI scans. Briefly,
following the exclusion of the first ten scans, the remaining fMRI
images underwent correction for time differences and head motion.
Afterward, fMRI scans were subjected to spatial normalization for
alignment with the standard MNI space. Next, images were resliced
into a resolution of 2 × 2 × 2mm³ and underwent additional pre-
processing steps including spatial smoothing (6mm full-width at half-
maximum), linear detrending, nuisance signal regression, and
0.01–0.1 Hz band-pass filtering. Finally, sixty-three participants of the
HCP cohort and forty-eight participants in the CHCP cohort were
discarded due to large head movement (rotation > 3.0°or
translation > 3.0mm).

Morphometric similarity network construction
For MSN construction, we first extracted nine morphometric char-
acteristics from the preprocessed sMRI and dMRI scans based on the
D-K atlas23. These features include curved index, folding index, mean
diffusivity, fractional anisotropy, Gaussian curvature, gray matter
volume, surface area, mean curvature, and cortical thickness. Sub-
sequently, z-normalization was performed on each morphometric
feature vector across ROIs, followed by the application of Pearson’s
correlations to the combined morphometric feature vector for
paired ROIs, resulting in the generation of a participant-specific
MSN∈ℝ308×308 as,

MSN =

p1, 1 p1, 1 � � � p1, 308

p2, 1 p2, 2 � � � p2, 308

..

. ..
. � � � ..

.

p308, 1 p308, 2 � � � p308, 308

2
666664

3
777775

ð1Þ

where pi,j is Pearson’s correlation coefficient between the morpho-
metric feature vector of ROI i and ROI j.

Estimation of time-varying SFC
Herein, time series for 308 ROIs of the D-K atlas were extracted
based on preprocessed fMRI images. The average fMRI signals
within each ROI were computed at each time point. Assuming that
xi = {xi(1), xi(2), …, xi(N)} is the fMRI time series of ROI i, where
1 ≤ i ≤ 308, and N denotes the number of sampling points. We sub-
sequently z-scored the fMRI signals as zi, while estimating the edge

time seriesmatrix E∈ℝ308 × 308 ×N by performing element-wise product
of pairwise signals9 as,

E =

e1, 1ðnÞ e1, 2ðnÞ � � � e1, 308ðnÞ
e2, 1ðnÞ e2, 2ðnÞ � � � e2, 308ðnÞ

..

. ..
. � � � ..

.

e308, 1ðnÞ e308, 2ðnÞ � � � e308, 308ðnÞ

2
666664

3
777775

=

z1ðnÞz1ðnÞ z1ðnÞz2ðnÞ � � � z1ðnÞz308ðnÞ
z2ðnÞz1ðnÞ z2ðnÞz2ðnÞ � � � z2ðnÞz308ðnÞ

..

. ..
. � � � ..

.

z308ðnÞz1ðtÞ z308ðnÞz2ðnÞ � � � z308ðnÞz308ðnÞ

2
66664

3
77775

ð2Þ

where ei,j indicates the element-wise product between edge time series
zi and zj, n is the sampling time point, n = 1, …, N.

Thereafter, each column in theMSNmatrix, i.e.,p[:, i], indicating an
area’s morphometric similarity connectivity to the remaining brain
areas, was correlated (using Pearson’s correlation) with the identical
area’s column in the functional co-fluctuation profile at time point n,
i.e., e[:, i](n), providing a time-varying SFC (tvSFC) ∈ℝ308 ×N for each
participant as,

tvSFC =

wpe
1 ðnÞ

wpe
2 ðnÞ
..
.

wpe
308ðnÞ

2
666664

3
777775

ð3Þ

wherewpe
i ðnÞ indicate the Pearson’s correlation coefficient between p[:,

i] and e[:, i] of the i-th ROI at the sampling time point n, n = 1,…, N. This
procedure finally generates a region × time matrix that captures the
dynamic fluctuation of SFC for individual regions across time.

Temporal variability of cortical dynamic SFC
To evaluate the dynamic fluctuating degree of resting-state SFC over
time, herein, the fuzzy entropywas applied to assess the complexity of
these tvSFC series11. Concretely, assuming that each subject has N SFC,
the series Wu (1 ≤ u ≤N) for tvSFC per ROI can be expressed as,

Wq
u = fwðuÞ, wðu+ 1Þ, :::, wðu+q� 1Þg �wðuÞ,u= 1, :::,N � q+ 1 ð4Þ

whereWq
u denotes q consecutivew values of the u-th SFC point, which

is determined by eliminating the baseline wðuÞ=q�1Pq�1
l =0wðu+ lÞ.

The similarity indexDq
ul betweenWq

u and the adjacency vectorWq
l

for a given r can be calculated as,

Dq
ul =μðd

q
ul , rÞ ð5Þ

where dq
ul denotes the largest absolute difference in the scalar com-

ponents between Wq
u and Wq

l .
For each vectorWq

u (u = 1, 2,…, N-q + 1), by averaging all similarity
degrees, Dq

ul , of its neighboring vectors Wq
l (l = 1, 2, …, N-q + 1, and

l ≠ u), we then get,

ϕq
uðrÞ= ðN � q� 1Þ�1

XN�q

l = 1, l≠u

Dq
ul ð6Þ

Based on φmðrÞ= ðN � qÞ�1PN�q
u= 1ϕ

q
uðrÞ, the FuzzEn(q, r) of

Wu (1 ≤ u ≤ N) is defined as,

FuzzEnðq, rÞ= limN!1½lnφqðrÞ � lnφq+ 1ðrÞ� ð7Þ
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which can be estimated by the statistic,

FuzzEnðq, r,NÞ= lnφqðrÞ � lnφq+ 1ðrÞ ð8Þ

where r and q indicate the width of the boundary for similarity mea-
surement and the length of the compared window, respectively. N
denotes the length of the TVSFC time series. Herein, following the
previous study, q was determined to be 2, and r was defined as 0.2
times the standard deviation of the SFC time series11.

The estimation of SFC temporal variability ∈ℝ308× 1 for each
participant allows us to derive the spatial distribution of SFC tem-
poral variability by averaging the variability vectors across all parti-
cipants. Subsequently, the 10% to 50% cortical regions representing
the largest and smallest fuzzy entropy were extracted to index the
complementary spatial architectures of SFC variability. In addition,
the regional structural connectivity was generated by calculating the
degree of MSN, which was further Z-scored. The functional network
was constructed using Pearson’s correlation of pairwise fMRI signals,
and the corresponding degree was calculated and Z-scored to exhibit
the regional functional connectivity. Meanwhile, the traditional static
SFC was computed by correlating the morphometric similarity and
functional connectivity profiles of each region, followed by
Z-scoring. Thereafter, spatial correlations between SFC temporal
variability and regional structural connectivity, functional con-
nectivity, as well as static SFC were investigated. A “spin”-based
permutation test (5000 times) was adopted to correct the spatial
autocorrelation26.

Partial least squares analysis between SFC variability and beha-
vior measures
Herein, PLS analysis was employed to investigate the multivariate
relationships between cortical SFCvariability and 59available behavior
measures (Table 1). As an unsupervised machine-learning technique,
PLS analysis identifies latent components by discerning weighted
patterns of two multivariables that exhibit maximum covariance with
each other62. The permutation test was employed to determine the
number of significant latent components (5000 permutations). Each
latent component is characterized by a unique profile of behavior
(referred to as behavioral saliences) and SFC variability distribution
(referred to as SFC variability saliences). By linearly projecting the SFC
variability and behavioral measures of each participant onto their
respective saliences, we obtain individual-specific SFC variability and
behavioral composite scores for each latent component. Pearson’s
correlation between SFC variability (behavioral) composite scores and
the original SFC variability data (behavioral measures) was calculated
to interpret the corresponding latent component. A strong positive (or
negative) association with respect to a specific behavioral trait (SFC
variability measure) suggests the heightened significance of the
behavioral trait (SFC variability measure) for the corresponding latent
component. Then, the confidence intervals for these correlations were
determined by a bootstrapping procedure63 that generated
1000 samples with replacement from the original behavioral and SFC
variability data. The correlation coefficients were divided by their
estimated standard deviation obtained through bootstrap to calculate
the Z-scores, which were further transformed into p-values and sub-
jected to either FDR correction or Bonferroni correction. Notably,
prior to the PLS analysis, confounding effects, including age and sex,
were regressed out from both behavioral and SFC variability data.

Additionally, a reliability analysis was performed by incorporating
confounding variables (age and sex) into the behavioral data for the
PLS analysis28. To evaluate the robustness of each latent component,
Pearson’s correlation was calculated between the SFC variability (or
behavioral) salience derived from the reliability analysis and that
obtained from the original PLS analysis.

Transcription-neuroimaging association analysis
Brain-wide gene expressions are extracted from the AHBA tran-
scriptomic dataset (http://human.brain-map.org; Supplementary
Table S11)13 using a standard pre-processing protocol (https://github.
com/BMHLab/AHBAprocessing; See the SupplementaryMethods 1 for
further details)16. Given the limited data available for the right
hemisphere in the AHBA dataset, our subsequent analysis was
focused only on the left hemisphere of the D-K atlas, i.e., 152
regions × 10,027 gene expression levels64. Then, PLS regression was
employed to probe the potential relationship between cortical SFC
variability and transcriptional levels for all genes. Thereinto, gene
expression levels were regarded as predictor variables to predict the
regional SFC variability in 152 brain regions located in the left
hemisphere. PLS1 depicted the most correlated cortical expression
map with respect to the temporal variability in cortical SFC. Addi-
tionally, a “spin”-based permutation test (5000 times) was adopted
to correct the spatial autocorrelation26. The bootstrapping technique
was performed to evaluate the contribution of each gene to the PLS1.
The Z-score per gene was determined by dividing its weight by the
corresponding bootstrap standard error, based on which all 10,027
genes were ranked. Then, genes exhibiting Z > 3 and FDR< 0.05 were
assigned to the PLS1+ gene list, while those with Z < -3 and FDR< 0.05
were allocated to the PLS1- gene list.

Enrichment analyses
Subsequently, the PLS1+ and PLS1− gene lists were separately sub-
jected to theMetascape analysis65 to identify enriched KEGG pathways
and GO biological processes. The enrichment pathways that survived
after FDR correction (pFDR < 0.01) were retained. For cell-type specific
expression analysis, we first obtained gene profiles of 7 cell types from
5 single-cell research66. To assign SFC variability-related genes
obtained by PLS analysis to cell types, we overlapped the gene set of
each cell type with the PLS1+ (or PLS1−) gene list. Subsequently, we
resampled the genes involved in cell types 5000 times to test the null
hypothesis that the PLS1+ (or PLS1−) gene list was randomly assigned
to different cell types64. The pperm was obtained by the occupied null
models (<5th, or >95th centile) and correctedbyFDR.With the identical
strategy, we performed cortical layer enrichment utilizing marker
genes identified from a prior transcriptomic investigation30.

Genes enriched for brain diseases
Based on several publicly curated disease gene databases, including
DisGeNET, OMIM, andGLAD4Udatabases, theWebGestalt tool (http://
www.webgestalt.org/)31 was adopted to explore the enrichment of
brain disease for cortical SFC variability-specific genes. The top ten
terms were summarized by the ranked p-value.

Neurotransmitter receptors and transporters analysis
We further test whether brain SFC variability was spatially correlated
with the distribution of 9 distinct neurotransmitter systems derived
from previously reported PET images (https://github.com/
netneurolab/hansen_receptors)19. The detailed information for
receptors and transporters can be found in Supplementary Table S4.
PET images of each neurotransmitter receptor/transporter were
averaged across participants and then standardized using Z-scores.
The spatial correlation between SFC variability distribution and each
neurotransmitter receptor/ transporter was performed. To account
for the spatial autocorrelation of brain regions, a “spin”-based spatial
permutation test26 was conducted 5000 times, followed by FDR
correction.

Subsequently, we fit a multiple linear regression model that pre-
dicts the cortical SFC variability from related neurotransmitter
receptor and transporter densities. However, due to inherent spatial
autocorrelation, proximal regions exhibit similar neurotransmitter
profiles and SFC variability67. To minimize the dependence between
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the two data sets caused by spatial autocorrelation, out-of-sample
cross-validation with a distance-dependent method32 was conducted
to assess predictive generalization. Specifically, for each of the 308
brain regions (from theD-K atlas), we defined a training set comprising
the 75% nearest regions (in Euclidean space), and used it to train the
regression model. The model was then used to predict SFC variability
in the remaining 25% of regions, and the predicted test set output
variable (regional SFC variability) was correlated to the actual test set
values. This procedure was repeated 308 times, yielding a distribution
of cross-validated correlations that reflects the model’s ability to
generalize to spatially distinct areas.

Additionally, the relative contribution of a specific neuro-
transmitter system to the overall fit (adjusted R2) in the multiple linear
regression model was evaluated by dominance analysis33 (See Sup-
plementary Methods 2 for further details).

Robustness and sensitivity analyses
The above cortical SFC variability was further validated in an inde-
pendent replication cohort, i.e., the CHCP cohort. Firstly, the SFC
temporal variability distribution of the CHCP cohort was calculated
following the same procedures as the HCP cohort. Spatial correlation
betweenHCPandCHCPcohortswas further performed to examine the
replicability of brain SFC temporal variability. Then, we utilized PLS
regression to map the variations in SFC variability of the CHCP cohort
to brain-wide gene expression of the AHBA. A multi-gene list meta-
analysis29 was performed between the PLS1+ (PLS1−) genes of the two
cohorts. The enrichment pathways that survived after FDR correction
(pFDR < 0.01) were retained.

Basedon twodifferent strategies, the validity of our proposedSFC
variability analysis was accordingly demonstrated. First, in addition to
MSN, WMN and MPCN were also constructed to measure inter-
regional structural relationships. Following the same strategy, WMN-
derived and MPCN-derived SFC variability was subsequently estab-
lished, and their relationships with individual behavioralmeasures and
brain-wide gene expressionwere further explored. Second, to evaluate
the influence of edge-level spatial proximity on SFC variability, fol-
lowing previous studies35,36, we calculated tvSFC by utilizing the partial
correlation between morphometric similarity and functional co-
fluctuation connectivity while regressing the shared relationship with
anatomical distance. After recomputing the SFC temporal variability,
the spatial correlation between SFC temporal variabilitymapswith and
without the regression of Euclidean distance was calculated. A “spin”-
based permutation test (5000 times) was adopted to correct the
spatial autocorrelation on the ROI level26.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MRI data of the HCP and CHCP cohorts are publicly available at
https://db.humanconnectome.org/ and https://cstr.cn/31253.11.
sciencedb.01374, respectively. The transcriptomic dataset of 6 post-
mortem adult brains can be found in the Allen Brain Atlas (“Complete
normalized microarray datasets”, https://human.brain-map.org/
static/download). Compiled cell-specific genes are available at
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-
020-17051-5/MediaObjects/41467_2020_17051_MOESM8_ESM.xlsx.
Disease-association terms are available at the WebGestalt website
(http://www.webgestalt.org/). Different layer markers are available at
https://static-content.springer.com/esm/art%3A10.1038%2Fnn.4548/
MediaObjects/41593_2017_BFnn4548_MOESM255_ESM.xlsx. Neuro-
transmitter maps are publicly available at https://github.com/
netneurolab/hansen_receptors. Source data are provided with
this paper.

Code availability
The MRI preprocessing software is freely available (FreeSurfer v6.0,
http://surfer.nmr.mgh.harvard.edu/, DPABI v7.0, https://rfmri.org/
DPABI, and FSL v6.0, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). The tem-
poral variability and statistical analyseswere conductedusingMATLAB
R2018b (https://ww2.mathworks.cn/products/matlab.html). The code
for behavioral PLS analysis is available at https://github.com/
danizoeller/myPLS. The standard protocol for gene expression analy-
sis is available at https://github.com/BMHLab/AHBAprocessing. The
code for PLS analysis of gene expression profiles is available at https://
github.com/SarahMorgan/Morphometric_Similarity_SZ. The code for
spin-based permutation testing of cortical correlations is available at
https://github.com/frantisekvasa/rotate_parcellation. Metascape ana-
lyses were performed at https://metascape.org/gp/index.html#/main/
step1. The code for neurotransmitter receptor and transporter analysis
by multiple linear regression model is available at https://github.com/
netneurolab/hansen_receptors. The dominance analysis is available at
https://github.com/dominance-analysis/dominance-analysis.
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