001045526 001__ 1045526
001045526 005__ 20250912110152.0
001045526 0247_ $$2doi$$a10.1162/imag_a_00423
001045526 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03531
001045526 0247_ $$2pmid$$a40800822
001045526 0247_ $$2WOS$$aWOS:001521329000001
001045526 037__ $$aFZJ-2025-03531
001045526 082__ $$a610
001045526 1001_ $$0P:(DE-Juel1)185961$$aFrahm, Lennart$$b0$$eCorresponding author
001045526 245__ $$aPredictive modeling of significance thresholding in activation likelihood estimation meta-analysis
001045526 260__ $$aCambridge, MA$$bMIT Press$$c2025
001045526 3367_ $$2DRIVER$$aarticle
001045526 3367_ $$2DataCite$$aOutput Types/Journal article
001045526 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1755702937_13354
001045526 3367_ $$2BibTeX$$aARTICLE
001045526 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001045526 3367_ $$00$$2EndNote$$aJournal Article
001045526 500__ $$aThis study was supported by the Deutsche Forschungsgemeinschaft (DFG, EI 816/11-1 and International Research Training Group 2150, 269953372/GRK2150), the National Institute of Mental Health (R01-MH074457), the National Institute of Aging (P30-AG066546), and the Jülich-Aachen Research Alliance (JARA) granting computation time on the supercomputer JURECA (Jülich Supercomputing Centre, 2018) at Forschungszentrum Jülich. Open access funding is enabled and organized by Projekt DEAL.
001045526 520__ $$aActivation Likelihood Estimation (ALE) employs voxel- or cluster-level family-wise error (vFWE or cFWE) correction or threshold-free cluster enhancement (TFCE) to counter false positives due to multiple comparisons. These corrections utilize Monte-Carlo simulations to approximate a null distribution of spatial convergence, which allows for the determination of a corrected significance threshold. The simulations may take many hours depending on the dataset and the hardware used to run the computations. In this study, we aimed to replace the time-consuming Monte-Carlo simulation procedure with an instantaneous machine-learning prediction based on features of the meta-analysis dataset. These features were created from the number of experiments in the dataset, the number of subjects per experiment, and the number of foci reported per experiment. We simulated 68,100 training datasets, containing between 10 and 150 experiments and computed the vFWE, cFWE, and TFCE significance thresholds. We then used this data to train one XGBoost regression model for each thresholding technique. Lastly, we validated the performance of the three models using 11 independent real-life datasets (21 contrasts) from previously published ALE meta-analyses. The vFWE model reached near-perfect prediction levels (R² = 0.996), while the TFCE and cFWE models achieved very good prediction accuracies of R² = 0.951 and R² = 0.938, respectively. This means that, on average, the difference between predicted and standard (monte-carlo based) cFWE thresholds was less than two voxels. Given that our model predicts significance thresholds in ALE meta-analyses with very high accuracy, we advocate our efficient prediction approach as a replacement for the currently used Monte-Carlo simulations in future ALE analyses. This will save hours of computation time and reduce energy consumption. Furthermore, the reduced compute time allows for easier implementation of multi-analysis set-ups like leave-one-out sensitivity analysis or subsampling.
001045526 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001045526 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001045526 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh R.$$b1$$ufzj
001045526 7001_ $$0P:(DE-HGF)0$$aSatterthwaite, Theodore D.$$b2
001045526 7001_ $$0P:(DE-HGF)0$$aFox, Peter T.$$b3
001045526 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b4$$ufzj
001045526 7001_ $$0P:(DE-Juel1)131693$$aLangner, Robert$$b5$$ufzj
001045526 773__ $$0PERI:(DE-600)3167925-0$$a10.1162/imag_a_00423$$gVol. 3, p. imag_a_00423$$pimag_a_00423$$tImaging neuroscience$$v3$$x2837-6056$$y2025
001045526 8564_ $$uhttps://juser.fz-juelich.de/record/1045526/files/imag_a_00423.pdf$$yOpenAccess
001045526 909CO $$ooai:juser.fz-juelich.de:1045526$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001045526 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)185961$$a  Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany Institute of Neuroscience and Medicine (INM7: Brain and Behavior), Research Centre Jülich, Jülich, Germany †Corresponding Author: Lennart Frahm (l.frahm@fz-juelich.de)$$b0
001045526 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b1$$kFZJ
001045526 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b4$$kFZJ
001045526 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b4
001045526 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131693$$aForschungszentrum Jülich$$b5$$kFZJ
001045526 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131693$$a HHU Düsseldorf$$b5
001045526 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001045526 9141_ $$y2025
001045526 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001045526 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-09-26T09:40:26Z
001045526 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-09-26T09:40:26Z
001045526 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001045526 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-09-26T09:40:26Z
001045526 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-02
001045526 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001045526 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-02
001045526 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001045526 980__ $$ajournal
001045526 980__ $$aVDB
001045526 980__ $$aUNRESTRICTED
001045526 980__ $$aI:(DE-Juel1)INM-7-20090406
001045526 9801_ $$aFullTexts