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ABSTRACT

Activation Likelihood Estimation (ALE) employs voxel- or cluster-level family-wise error (vFWE or cFWE) correction 
or threshold-free cluster enhancement (TFCE) to counter false positives due to multiple comparisons. These cor-
rections utilize Monte-Carlo simulations to approximate a null distribution of spatial convergence, which allows for 
the determination of a corrected significance threshold. The simulations may take many hours depending on the 
dataset and the hardware used to run the computations. In this study, we aimed to replace the time-consuming 
Monte-Carlo simulation procedure with an instantaneous machine-learning prediction based on features of the 
meta-analysis dataset. These features were created from the number of experiments in the dataset, the number of 
subjects per experiment, and the number of foci reported per experiment. We simulated 68,100 training datasets, 
containing between 10 and 150 experiments and computed the vFWE, cFWE, and TFCE significance thresholds. 
We then used this data to train one XGBoost regression model for each thresholding technique. Lastly, we validated 
the performance of the three models using 11 independent real-life datasets (21 contrasts) from previously pub-
lished ALE meta-analyses. The vFWE model reached near-perfect prediction levels (R² = 0.996), while the TFCE and 
cFWE models achieved very good prediction accuracies of R² = 0.951 and R² = 0.938, respectively. This means 
that, on average, the difference between predicted and standard (monte-carlo based) cFWE thresholds was less 
than two voxels. Given that our model predicts significance thresholds in ALE meta-analyses with very high accu-
racy, we advocate our efficient prediction approach as a replacement for the currently used Monte-Carlo simula-
tions in future ALE analyses. This will save hours of computation time and reduce energy consumption. Furthermore, 
the reduced compute time allows for easier implementation of multi-analysis set-ups like leave-one-out sensitivity 
analysis or subsampling.
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1.  INTRODUCTION

Activation likelihood estimation (ALE) is a widely used 
coordinate-based meta-analysis (CBMA) technique, which 
allows researchers to synthesize findings across multiple 
brain imaging studies (Laird, Fox, et al., 2005; Turkeltaub 
et al., 2002). ALE helps identify consistent patterns of brain 
activation by analyzing the spatial locations of activation 
foci reported in different studies. Importantly, ALE takes 
into account the spatial uncertainty inherent in neuroimag-
ing results by modeling coordinates, representing peaks of 
activation, not as dimensionless points but as 3-D Gauss-
ian probability distributions (Eickhoff et  al., 2009). The 
smoothed results of all experiments are combined into an 
“ALE-map”, in which each voxel is assigned a value quan-
tifying the between-experiment overlap observed. This 
between-experiment overlap is usually called “conver-
gence” in the context of ALE meta-analyses. ALE then 
uses an analytical procedure, called non-linear histogram 
integration or convolution, to calculate a voxel-wise null 
distribution (Eickhoff et  al., 2012). This procedure is 
extremely efficient and allows for the calculation of p-val-
ues and through these, significance testing on a voxel 
level. Unfortunately, due to the high number of statistical 
comparisons made on the whole-brain level, the chance of 
spuriously significant clusters (false-positives) is very high. 
Therefore, reporting uncorrected results is strongly dis-
couraged. To control the rate of false positives, ALE tradi-
tionally employs voxel- or cluster-level family-wise error 
(vFWE or cFWE) correction (Eickhoff et  al., 2012, 2016). 
Recently, threshold-free cluster-enhancement (TFCE; 
Smith & Nichols, 2009) has been proposed as an alterna-
tive correction method (Frahm et al., 2022). All three cor-
rection algorithms are based on Monte-Carlo simulations, 
or permutation-based null distributions of spatial aggrega-
tion under the assumption of spatial independence of the 
coordinates (Fig.  1). In regard to implementation, this 
means making a copy of the original meta-analysis dataset 
but replacing the reported coordinates by coordinates ran-
domly sampled from a gray-matter mask (>10% probabil-
ity for gray matter; Evans et al., 1994). Next, a standard 
ALE is calculated for the random-association dataset, and 
the maximum amount of convergence is saved. The quan-
tification of the amount of convergence depends on the 
correction algorithm: vFWE uses the highest ALE value, 
TFCE the highest TFCE-value, and cFWE uses the number 
of voxels in the largest continuous cluster after applying a 
cluster-forming threshold (at voxel-level). To get a good 
approximation of the distribution of maximum conver-
gence found in random data (from here on: null distribu-
tion), this process needs to be repeated at least 1000 
times, but, in general, it is recommended to use between 
5000 to 10,000 permutations (Eickhoff et al., 2012). As a 

last step, the original ALE, z or TFCE-statistic map is 
thresholded against the 95th percentile of the null distribu-
tion, which corresponds to a p-value of 0.05. The value of 
this 95th percentile is the most relevant part of the null dis-
tribution and will hereafter be referred to as (significance) 
cutoff value. Through the cutoff value, the permutation 
procedure allows for null-hypothesis significance testing, 
while taking into account the number of statistical compar-
isons made. Even though the computations required for a 
single iteration of the permutation testing procedure are 
not particularly time intensive, computation time quickly 
accumulates when running thousands of iterations. This 
leads to an individual ALE analysis taking multiple hours, 
depending on the dataset and hardware used for running 
the computations.

The current project aimed to provide a machine-
learning-based alternative to the permutation-based sig-
nificance testing. To this end, we developed a method 
using a range of summary characteristics of the dataset 
(i.e., meta-data) as features to predict the cutoff value. 
This idea was inspired by the observation that the 
permutation-based testing procedure for any given data-
set would always result in a specific null distribution with 
increasing repetitions. This means that for every ALE 
dataset there exists a deterministic cutoff value for each 
of the three thresholding techniques, vFWE, cFWE, and 
TFCE. These deterministic cutoff values differ between 
datasets, that is, there must be certain properties inher-
ent to a given dataset that define the null distribution and, 
in turn, the cutoff value. The most vital part of any dataset 
collected for a coordinate-based meta-analysis is the 
coordinates reported by the different experiments, but as 
these coordinates get replaced by random coordinates 
for each permutation of the Monte-Carlo simulation, the 
original location of foci does not impact the null distribu-
tion obtained. To further corroborate this pivotal point, we 
ran Monte-Carlo simulations for 10 datasets that were 
identical regarding all characteristics but the location of 
their coordinates. As expected, the resulting cutoff val-
ues were the same or nearly identical for all 10 datasets 
(Supplementary Material). Furthermore, the random allo-
cation of coordinates is the exact same for any dataset, 
meaning the sampling process also does not influence 
the cutoff value. This leaves the following dataset charac-
teristics that shape the null distribution: the number of 
experiments, the number of subjects scanned in each 
experiment, and the number of foci reported by each 
experiment. Determining how these characteristics 
determine the null distribution might be solvable in a 
parametric way. However, the relationship between the 
parameters and the threshold is highly complex and 
therefore not solvable given our current mathematical 
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tools, which is why we resorted to approximating the 
solution via machine-learning techniques.

Given the time-consuming nature of the permutation-
based testing procedure, replacing it with an instanta-
neous prediction would be a major improvement for the 
ALE algorithm. This is especially true for more complex 
and advanced analysis set-ups, like jackknife or leave-
one-out sensitivity analyses. These analyses are used to 
assess the stability of results, by running n (number of 
experiments) - 1 separate ALEs, excluding a different 
experiment in each run. Evidently, the time saved per ALE 
becomes much more impactful because it is multiplied by 
the number of analyses run. Another benefit of machine-
learning predictions over the permutation-based testing 
procedure is replicability. For a given dataset, a trained 
regression model will always predict the same threshold, 
while the Monte-Carlo simulations approximate the “true 
cutoff” anew each time and therefore, depending on the 
number of iterations, show some rather substantial vari-
ance (Fig. 2).

In this study, we first simulated meta-analysis data-
sets, spanning a broad range of potential sizes and 
experiment characteristics. For all of these datasets, we 
ran extended Monte-Carlo simulations to approximate 
the true cutoff values for vFWE, cFWE, and TFCE as pre-
cisely as possible. We then trained multiple different 
machine-learning algorithms on this data using a 10-fold 
cross-validation scheme and lastly validated the best 

performing algorithm on 21 datasets from previously 
published ALE meta-analyses.

2.  METHODS

Our methodological set-up comprised four steps: (1) 
generating simulated training datasets, (2) running 
Monte-Carlo simulations to determine significance cutoff 
values for each simulated dataset, (3) training machine-
learning models, evaluating their performance, and 
choosing the best performing model, and (4) validating 
model performance on “real-life” ALE datasets. As all 
analyses were performed on simulated or data freely pro-
vided by other authors, no additional approval by an eth-
ics committee was required for this study.

2.1.  Training data

As established in the introduction, the Monte-Carlo sim-
ulations are not dependent on the reported coordinates 
or convergence observed in the original (“real-life”) 
dataset. Therefore, technically it is possible to generate 
unlimited amounts of training data in the form of simu-
lated meta-analysis datasets. The limiting factor in this 
case is the computation time required to run the Monte-
Carlo simulations to get the cutoff values for a given 
dataset. To simulate a dataset, we chose a certain size 
(number of experiments) and then randomly sampled 

Fig. 1.  A simplified version of the Monte-Carlo simulation procedure employed in ALE. The brain is here represented 
by a cube and the foci of activation, already smoothed by 3-D Gaussians, are represented by colored circles. Each color 
represents a different experiment. First, the original ALE map is calculated based on the coordinates and experiment 
characteristics featured in the dataset. The dataset is then copied, and the coordinates randomly distributed in the brain. 
This is then repeated between 5000 and 10,000 times, and for each repetition the maximum convergence is saved. 
These saved maximum convergence values are then used as a null distribution against which the original (observed) 
convergence values are compared.
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each experiment’s characteristics (number of subjects 
and number of foci) from a distribution of choice. Our 
aim was to expose the models to the broadest range of 
parameter combinations possible, to ensure that our 
models would be applicable to the wide range of data-
sets users might encounter in empirical research. In 
total, we simulated 68,100 datasets with 10 to 150 
experiments, which encompasses the most frequently 
observed dataset sizes. The training data can be divided 
into four batches based on the distributions they are 
based on. The largest batch of datasets (50,000) were 
filled with experiments whose sample size and number 
of foci included were randomly sampled from normal 
distributions (sample size: mean = 20, standard devia-
tion (SD) = 10; number of foci: mean = 15, SD = 10) sim-
ilar to what is found in previously observed datasets 
according to the BrainMap database (Fox & Lancaster, 
2002; Laird, Lancaster, et al., 2005). With the next batch 
we tried to model more heterogeneous datasets by 
sampling both parameters from uniform distributions 
(sample size: 5 to 50; number of foci: 1 to 30). This batch 
includes 9000 datasets. Through the third batch, we 
tried to model more extreme datasets by iterating over 
three distinct distributions (low, medium, high) for both 
sample size and number of foci, totaling nine combina-
tions. For sample size, we used uniform distributions 
ranging from 4 to 10 subjects (low), from 10 to 25 sub-
jects (medium), and from 25 to 50 subjects (high). For 
the number of foci, we used uniform distributions rang-
ing from 1 to 5 foci (low), from 5 to 15 (medium), and 
from 10 to 30 foci (high). This batch included 6300 data-
sets. The last batch of training data modeled the most 
extreme of datasets, including experiments with up to 

300 subjects or reporting up to 150 foci. This batch 
included 2800 datasets. After creating the datasets, we 
ran the ALE permutation testing procedure with 15,000 
iterations per dataset to calculate the significance 
threshold for vFWE, cFWE, and TFCE, which served as 
ground-truth labels for training. Ideally, we would have 
used a much higher number of iterations (>100,000) per 
dataset to best approximate the ground truth (see also 
Fig. 2). This, however, was not feasible due to the high 
computational demand of calculating so many permuta-
tions for almost 70,000 datasets. We decided that cov-
ering a broad range of potential dataset characteristics 
was more important than reducing the somewhat higher 
variability in the prediction response due to the limited 
number of permutations.

2.2.  Features

When abstracting the question, the Monte-Carlo simula-
tion tries to solve in ALE, it could be phrased like this: “If 
we randomly place x Gaussians with spread s into a 3D 
space with fixed dimensions, how much convergence 
will there be on average?” Following this question, the 
variables it contains, and the mathematical underpin-
nings of the ALE algorithm, it becomes clear which data-
set characteristics influence the null distribution. The 
number of foci constitute x, the number of Gaussians. 
The spread s of these Gaussians is determined by the 
number of subjects. The number of experiments has a 
more indirect influence, based on the random-effects 
inference employed by ALE (Eickhoff et al., 2009). Based 
on this a priori assessment, we generated 26 features. 
The majority of the features are summary statistics about 

Fig. 2.  Variability in the results of the permutation-based thresholding procedure for different numbers of iterations. For 
assessment, we simulated a dataset with 35 experiments, calculated Monte-Carlo simulations with one million iterations, 
and took 10,000 slices of a certain size, representing the number of iterations. Each bar shows the standard deviation 
in percent of the total cutoff value for a certain number of iterations. The vFWE threshold shows the least amount of 
variance, while cFWE features the highest amount of variance.
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the number of participants and the number of foci per 
experiment, such as mean, median, standard deviation, 
minimum, maximum, skewness, and kurtosis. We addi-
tionally created more complex features. The first set of 
complex features comprised summary statistics over the 
ratio between the number of subjects and the number of 
foci. The second set of complex features divided the 
total number of foci into high impact, medium impact, 
low impact, and very low impact based on the number of 
subjects each experiment reported and summed them 
up per category. Table 1 gives a complete overview over 
all features used.

2.3.  Evaluation and model selection

We trained and evaluated 6 different regression models 
(linear regression, ridge regression, k-nearest neighbor 
regression (KNN), RandomForest, AdaBoost, and 
XGBoost) (Pedregosa at al., 2011) using their default 
hyperparameter values as implemented in Scikit-learn 
and the XGBoost python package (Chen & Guestrin, 
2016). For a more detailed description, please refer to the 

Supplementary Material. Model evaluation was based on 
a 10-fold cross-validation scheme using the complete set 
of simulated datasets. This means we always trained the 
models on 61,290 datasets and predicted the cutoff 
value for the remaining 6810 held-out datasets. We used 
mean absolute percentage error (MAPE) and the coeffi-
cient of determination (R²) averaged over all folds as per-
formance metrics. The best performing model, based on 
its R² score, per thresholding technique was then vali-
dated on real-life datasets.

2.4.  Validation on published datasets

Even though the simulated datasets were created in a 
way that aimed to cover the broad range of possible 
dataset characteristics as much as possible, it is import-
ant to confirm that the models perform well on real-life 
ALE datasets. To this end, we trained three selected 
models (one per threshold type) on all 68,100 simulated 
datasets and predicted thresholds in 11 previously pub-
lished (or currently reviewed) ALE datasets, across 21 
different contrasts (Table  2). The real-life ALE datasets 
spanned a large range of different sizes, subject popula-
tions, and cognitive domains and should therefore be 
largely representative of the majority of future ALEs. We 
then compared the predicted thresholds to thresholds 
calculated by permutation testing with 50,000 iterations. 
We increased the number of iterations to this level to 
ensure that we would approximate the underlying distri-
bution as closely as possible.

3.  RESULTS

3.1.  Prediction performance and model selection in 
simulated data

Regarding the prediction of vFWE cutoff values in the 
simulated data, all models performed at an extremely 
high level (Fig. 3). The worst performing models were lin-
ear regression, ridge regression, and AdaBoost but still 
with high average R² values between 0.983 and 0.985. 
Both KNN and RandomForest performed slightly better 
with average R² values of 0.994 and 0.996, respectively. 
The best-performing model was XGBoost with an R² of 
0.999, which basically constitutes a perfect prediction. 
The performance of models when predicting cFWE cutoff 
values was slightly worse than what was observed for 
vFWE cutoffs, but still at a very good level. The worst 
performing algorithm was KNN, which achieved an R² of 
0.850. Linear regression, ridge regression, and AdaBoost 
performed better with R² scores between 0.923 and 
0.933. As with vFWE cutoff prediction, the best perform-
ing models were RandomForest (R² = 0.967) and XGBoost 

Table 1.  Features used for prediction.

Training data

Name Summary statistics

Number of experiments -
Total number of foci / number of 
experiments

-

Number of subjects Total
Mean
Median
Standard deviation
Maximum
Minimum
Skewness
Kurtosis

Number of foci Total
Mean
Median
Standard deviation
Maximum
Minimum
Skewness
Kurtosis

Number of foci / number of 
subjects ratio

Mean
Standard deviation
Maximum
Minimum

Number of foci by impact  
(number of subjects)

High impact (> 20)
Medium impact (15 - 20)
Low impact (10 - 15)
Very low impact (< 10)

For some features, aggregation/ summary statistics were 
necessary to keep the number of features stable and independent 
from the dataset size. In total, we used 26 features.
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(R² = 0.986). The prediction of TFCE thresholds was sim-
ilar in accuracy and ranking of models to the prediction of 
vFWE thresholds. The worst performing models were lin-
ear and ridge regression, each yielding an R² of 0.974, 
only slightly surpassed by AdaBoost at 0.981. Random-
Forest, KNN, and XGBoost all produced R² scores above 
0.99. For all three thresholding methods, XGBoost was 
able to capture the relationship between dataset charac-
teristics and the cutoff values the best, and it did so while 
being one of the computationally faster algorithms and 
without any hyperparameter tuning. We, therefore, 
decided to use XGBoost for all three threshold types and 
proceed with our validation.

We also analyzed the prediction performance based on 
the mean absolute percentage error (MAPE), which rep-
resents the size of the prediction errors relative to the 
simulation-derived mean values in terms of percentages. 
Of note, although all models performed with very high R2 
(>0.98) when predicting the vFWE threshold, the MAPE 
was comparatively large (>3%). Nonetheless, XGBoost 
performed best on this metric as well, featuring MAPE val-
ues of about 0.5 for vFWE, 0.9 for cFWE, and 0.5 for TFCE.

3.2.  Validation in real-life data

The algorithm was able to predict all three significance 
thresholds in unseen naturalistic datasets with very high 

accuracy for vFWE (R² = 0.985), cFWE (R² = 0.882), and 
TFCE (R² = 0.95) (Fig. 4). It can be observed that there is 
an order in performance following the abstraction level of 
the cutoff value. The vFWE cutoff value is a voxel-based 
ALE value and is therefore most immediately connected 
to the dataset parameters. The TFCE cutoff, though still 
at the voxel level, is derived from a z-statistic—one step 
abstracted from ALE values. Accordingly, its predictive 
performance was slightly lower. The lowest direct cor-
relation was observed for the cFWE threshold, which 
determines a minimum cluster size after a voxel-level 
inclusion thresholding based on a z-statistic. This more 
indirect relationship between dataset characteristics and 
the cFWE threshold was reflected in its relatively lower 
prediction accuracy.

Notably, there is one dataset (Kamalian et  al., 2022) 
which showed the by far largest prediction error for both 
vFWE and cFWE (shown in Fig. 4 as a red dot). In this 
dataset, there are two experiments which feature 634 
and 175 foci, respectively, due to the fact that the authors 
had to aggregate numerous studies that used the same 
sample of participants (large-scale public dataset) and 
therefore could not be counted as independent experi-
ments in the ALE analysis. These high numbers of foci 
are very unusual and exceed the maximum number of 
foci for experiments in the simulated training datasets, 
which was 150. The larger prediction error for this dataset 

Table 2.  Datasets and contrasts used for empirical model validation.

Datasets & Contrasts

Author (Year) Domain Modality Contrast Number of experiments

Langner and Eickhoff (2013) Sustained Attention TA All 67
Kogler et al. (2015) Stress TA All 125

Physical 82
Social 43

Müller et al. (2017) Depression TA All 99
Cognition 34
Emotion 65
Activation 50
Deactivation 49

Kogler et al. (2020) Empathy TA Affective empathy 19
Cognitive empathy 38
Empathy for pain 24
Empathy for emotions 33
Pain 72

Henn et al. (2022) Chronic Pain VBM All 103
Kamalian et al (2022) Dementia VBM/VBP All 31
Rahimi-Jafari et al. (2022) Narcolepsy TA/VBM All 15
Saberi et al. (2022) Late-life depression VBM/VBP All 26
Naghibi et al. (2023) Time perception TA All 95
Cieslik et al. (2023) Task control TA All 143
Reimann et al. (under review) Insomnia VBM/VBP All 26

For some datasets we used multiple contrasts, which allowed us to get a larger range of dataset sizes without having to acquire 
additional full datasets. All contrasts used are or will be part of an ALE meta-analysis publication. In the modality column, TA stands for 
task-activation, VBM for voxel-based morphometry, and VBP for voxel-based physiology.
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showed that even though the prediction algorithms per-
formed very well on unseen datasets that fall into the 
expected parameter space, they are not able to extrapo-
late, which is not unexpected. When removing this data-
set from the validation, the R² score for the vFWE 
prediction increased to 0.996, while it increased to 0.951 

for the cFWE prediction. It should be noted that the TFCE 
threshold prediction for this dataset is very good. There-
fore, removing the dataset does not lead to a notable 
increase in overall TFCE prediction accuracy.

We additionally examined the size and center posi-
tions of the significant clusters resulting from either the 

Fig. 3.  Prediction performance (as indicated by R² and MAPE) of different regression algorithms when using a 10-fold 
cross-validation scheme on the full training data. Left: prediction of the vFWE threshold. XGBoost performed best, closely 
followed by RandomForest and K-nearest neighbor regression. Middle: prediction of the cFWE threshold. XGBoost 
performed best, closely followed by RandomForest. Right: prediction of the TFCE threshold. XGBoost performed best, 
closely followed by K-nearest neighbor and RandomForest.

Fig. 4.  Prediction performance of the XGBoost regression for vFWE (left), cFWE (middle) and TFCE thresholds for 
previously unseen naturalistic datasets. The regression line was added for illustrating a perfect linear correspondence 
between the two. The red data point indicates a dataset that falls outside the parameter space covered by the simulated 
training data, featuring the largest prediction error for both vFWE and cFWE models.
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predicted threshold or the threshold based on extended 
(100,000 permutations) Monte-Carlo simulations (Table 
3 in Supplementary Material). In total, we analyzed 20 
different contrasts with three thresholding techniques, 
resulting in 60 analyses overall. For vFWE, 12 out of 20 
analyses using the predicted threshold produced identi-
cal results compared to those observed with the 
simulation-derived threshold. Seven analyses revealed 
small changes in size (<30 voxels in total or <10% total 
voxel count) and in the center positions of some signifi-
cant clusters (<4 mm change in centers). When analyz-
ing the task control dataset from Cieslik et  al. (2023), 
cluster 11 was detected only with the application of the 
Monte-Carlo threshold. Upon further investigation, we 
found that the slightly lower predicted threshold caused 
cluster 11 to merge with cluster 3, forming a single 
larger cluster.

Predicting cFWE thresholds resulted in identical find-
ings in 18 out of 20 analyses. In the remaining two cases, 
individual clusters were one and two voxels short of the 
cluster extent threshold used by cFWE, respectively. 
These discrepancies represent extreme edge cases, as 
even a standard Monte-Carlo simulation running 5000 to 
10,000 permutations would have an equal probability of 
the clusters being accepted or rejected. TFCE threshold-
ing demonstrated a performance similar to vFWE, with 11 
analyses producing identical results, 8 showing minor 
changes, and 1 analysis revealing the breakup of one 
large cluster into three subclusters.

3.3.  Feature Importance

We engineered features based on prior knowledge of the 
ALE algorithm and intuition. Looking at the feature 

weights of our final models allowed us to learn more 
about the association between dataset characteristics 
and the outcome of the Monte-Carlo simulation (Fig. 5). 
Inspecting the features that drive the predictions for each 
of the thresholding techniques showed that the TFCE 
threshold seems to be almost exclusively influenced by 
the total number of foci in the dataset. This is similar to 
the voxel-level cutoff, which is also strongly driven by the 
total number of foci but is additionally influenced by the 
number of high-impact foci (experiments >20 subjects). 
For the prediction of the cFWE cutoff-value, the model is 
using a much broader array of features. The most import-
ant feature is the number of experiments in the dataset 
followed by the average number of subjects. The next 
four features, namely the minimal ratio of foci to subject, 
the total number of foci, the standard deviation of the 
number of subjects, and the total number of very low 
impact foci (experiments <10 subjects), all still contribute 
majorly to the prediction (>5% contribution). It should be 
noted that none of the features had a feature importance 
of 0, which means that even though some of the features 
are highly correlated, they all seem to capture some 
unique variance of the cutoff value. This is why we did not 
further reduce the feature space to achieve a simpler 
model.

4.  DISCUSSION

The current study aimed to provide an alternative to the 
time-consuming Monte-Carlo simulations ALE employs 
to estimate significance thresholds corrected for multiple 
comparisons with machine-learning-based predictions. 
To achieve this, we simulated close to 70,000 ALE data-
sets, spanning a large range of potential different size 

Fig. 5.  Feature importance of the three XGBoost models trained on the full training dataset. Red features are based on 
the number of experiments, blue features on the number of foci, green features on the number of subjects and purple 
features are composite features made up out of a combination of the three feature types listed above. It can be observed 
that vFWE and TFCE are both largely influenced by the number of foci, while cFWE is influenced more by the number of 
experiments and the number of subjects.
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and experiment characteristics. We performed extensive 
Monte-Carlo simulations (15,000 iterations per analysis) 
on these datasets to determine the “true” significance 
thresholds. Using dataset characteristics as features, like 
the average number of subjects or the total number of 
foci, we trained machine-learning algorithms to predict 
the “true” significance thresholds for both vFWE and 
cFWE. We selected the most appropriate algorithm by 
running a 10-fold cross-validation scheme. We then con-
tinued to validate the best-performing algorithm on real-
life ALE datasets. These datasets were taken from 
previously published or submitted ALE meta-analyses 
(Table  2), which therefore constitute a highly realistic 
empirical validation set. As a last step, we compared the 
computation time required for the Monte-Carlo simula-
tions in the validation datasets to that required for the 
predictions. In general, the prediction of vFWE, cFWE, 
and TFCE cutoff values worked extremely well. Using 
XGBoost (Chen & Guestrin, 2016) with its standard 
parameters, we were able to achieve R²-scores of 0.996 
for vFWE thresholds, 0.939 for cFWE thresholds, and 
0.953 for TFCE thresholds in previously unseen real-life 
datasets. Replacing the permutation testing by instanta-
neous predictions can save between 1 to 5 hours depend-
ing on the dataset size for a singular ALE analysis.

4.1.  Approximation of true cutoff values

The Monte-Carlo simulation procedure currently used in 
ALE only approximates the null distribution of spatial 
convergence, which leads to variance of the determined 
(and to-be-predicted) cutoff value (Fig. 2). Interestingly, 
the three thresholding techniques differ in their cutoff 
value variance when keeping the permutations con-
stant. This difference seems to be based on the thresh-
olding technique’s level of abstraction or complexity. 
vFWE, which is directly calculated from ALE scores, fea-
tures the lowest variance, while cFWE which is based 
on an initial ALE score–based thresholding and a subse-
quent cluster size evaluation, shows the highest vari-
ance. The different levels of abstraction can also later 
be observed in the prediction performances for each 
technique, with thresholds obtained from more complex 
techniques being harder to predict. An additional way in 
which the variance of the determined cutoff value 
impacts the performance of the models is that the algo-
rithm will be presented with an approximated label 
during training. This can lead to the algorithm learning 
slightly wrong associations between features (i.e., data-
set characteristics) and the target variable (i.e., the sig-
nificance threshold). One possible solution would have 
been to increase the number of iterations calculated. 
Due to the high computational cost connected with the 

Monte-Carlo simulations, we had to decide between 
using fewer datasets with more permutation iterations 
(smaller parameter space coverage, higher cutoff preci-
sion) or more datasets with fewer permutation iterations 
(larger parameter space coverage, lower cutoff preci-
sion). Considering this trade-off, we decided to only 
slightly increase the number of iterations from the val-
ues recommended in the literature, which allowed us to 
focus on covering as much of the possible dataset 
space as possible. Our results confirm that this approach 
worked as the prediction error caused by datasets with 
characteristics outside the parameter space used in 
training was much larger than the imprecision caused 
by the approximated cutoff value. In general, it should 
be noted that both the variance inherent in the permuta-
tion procedure at 5000 to 10,000 iterations and the pre-
diction error observed in the validation datasets are 
negligible in the grand scheme of things and should not 
influence the results of a given ALE analysis to a notable 
degree. This is especially true because the variance is 
not systematic but random and it is therefore equally 
likely to get a slightly lower or higher threshold.

4.2.  Out-of-distribution prediction

Our models were able to predict unseen data with high 
accuracy. The only exception was a real-life ALE dataset 
which included experiments that reported many more 
foci than any simulated experiment we included in our 
training data. The lackluster accuracy for this dataset is 
not surprising as such out-of-distribution (OOD) predic-
tions are a common problem in the realm of machine 
learning and statistical modeling (Amodei et  al., 2016). 
There are two main ways of dealing with such sample 
anomalies. The first is building a model which generalizes 
well even to OOD samples using complex training mech-
anisms (e.g., Yi et  al., 2021). The second is detecting 
samples which go beyond the distributions encountered 
in the training data (e.g., Yang et al., 2021) and then either 
modifying or rejecting the prediction and allowing for 
human intervention. This second approach is preferred in 
situations that require high prediction accuracy, which is 
why we decided to follow it. In comparison to many other 
domains in which such out-of-distribution detection is 
applied, we have one major advantage: we know the 
exact range of feature distributions present in the training 
data. We were, therefore, able to define boundary condi-
tions for which we could “guarantee” the promised pre-
diction accuracies. In particular, to be considered eligible 
for our prediction-based thresholding, meta-analysis 
datasets need to comprise between 10 and 150 experi-
ments, with no experiment having more than 300 sub-
jects and no experiment reporting more than 150 foci. In 
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our implementation, a warning is shown to the user when 
recognizing datasets with characteristics that violate 
these boundary conditions and the standard permutation-
based testing is run instead. The predicted threshold is 
then used to indicate early stopping, in case the pre-
dicted and the approximated cutoff values converge after 
1000 (2000, 3000, etc.) iterations. With the number of 
neuroimaging publications growing each year and the 
steadily increasing sample sizes, the range of training 
data might need to be extended at some point to ensure 
compatibility with future ALE datasets.

4.3.  Prediction-based thresholding beyond ALE

Other CBMA approaches, most notably seed-based d 
mapping (SDM-PSI; Albajes-Eizagirre et al., 2019), also 
use Monte-Carlo simulation or permutation testing set-
ups to control the family-wise error rate. Even though the 
algorithmic procedures may be slightly different, there 
should be enough similarities to warrant a thorough look 
into the possibility of using a similar threshold prediction 
approach as described here for ALE. Additionally, there 
are a multitude of neuroimaging domains, besides meta-
analyses, in which Monte-Carlo simulations are employed, 
for some of which a replacement with a prediction algo-
rithm could be a potential improvement. A brief literature 
search did not uncover any previous attempts at this, 
which makes it even more important for future research 
to investigate possibilities in this direction.

4.4.  Future of ALE using cutoff predictions

Reducing the computation time for individual ALE anal-
yses from hours to minutes is a significant advance but 
may appear less important when considering the lengthy 
process of manually curating meta-analysis datasets, 
which can take up to months. This reduction in compute 
time is, nevertheless, crucial for the future of ALE for 
multiple reasons. First, ALE meta-analyses often involve 
running numerous contrasts, each with different inclu-
sion criteria, sampling from the whole dataset. For 
example, Müller et  al. (2017) ran 16 different ALEs in 
their study of altered brain activity in unipolar depres-
sion. Second, the recent trend of supplementing ALE 
with jackknife analysis, as seen in studies like Song 
et al. (2021) and Tablante et al. (2023), requires recom-
puting the ALE multiple times for leave-one-out cross-
validation. This process, essential for assessing the 
reliability of ALE results, demands running at least as 
many ALE analyses as there are experiments in the 
dataset. These factors highlight the ongoing need for 
faster ALE computation, a need that will only grow as 
more complex applications of ALE emerge.

5.  CONCLUSION

ALE employs vFWE, cFWE, or TFCE corrections to allow 
for testing statistical significance corrected for multiple 
comparisons. These corrections are based on Monte-
Carlo simulations through which a null distribution of spa-
tial convergence across experiments is approximated. The 
95th percentile of this null distribution is then used as a 
significance threshold for the ALE maps resulting from the 
original dataset. The only major downside of this method-
ology is the high computation time, with runtimes of up to 
several hours. In this study, we demonstrated that ALE sig-
nificance thresholds can be predicted with extremely high 
accuracy using XGBoost regression models based on fea-
tures derived from a few characteristics and summary sta-
tistics of the meta-analysis dataset. As these predictions 
are nearly instant, our approach is able to save hours of 
computation time per ALE analysis without losing a rele-
vant amount of thresholding accuracy. We, therefore, rec-
ommend replacing the Monte-Carlo simulations with 
predictions based on our models for future ALE analyses.
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