001045550 001__ 1045550
001045550 005__ 20250930132718.0
001045550 0247_ $$2doi$$a10.1109/OJCSYS.2025.3601836
001045550 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03546
001045550 0247_ $$2WOS$$aWOS:001569592700004
001045550 037__ $$aFZJ-2025-03546
001045550 082__ $$a004
001045550 1001_ $$0P:(DE-Juel1)203428$$aWenzel, Moritz$$b0$$eCorresponding author
001045550 245__ $$aGaussian Process Supported Stochastic MPC for Distribution Grids
001045550 260__ $$aNew York, NY$$bIEEE$$c2025
001045550 3367_ $$2DRIVER$$aarticle
001045550 3367_ $$2DataCite$$aOutput Types/Journal article
001045550 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1758097342_2510
001045550 3367_ $$2BibTeX$$aARTICLE
001045550 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001045550 3367_ $$00$$2EndNote$$aJournal Article
001045550 520__ $$aThe efficacy of control systems for distribution grids can be influenced by different sources of uncertainty. Stochastic Model Predictive Control (SMPC) can be employed to compensate for such uncertainties by integrating their probability distribution into the control problem. An efficient SMPC algorithm for online control applications is the stochastic tube SMPC, which is able to treat the evaluation of the chance constraints analytically. However, this approach is efficient only when the calculation of the constraint back-off is applied to a linear model. To address this issue, this work employs Gaussian Processes to approximate the nonlinear part of the power flow equations based on offline training, which is integrated into the SMPC formulation. The resulting SMPC is first validated and then tested on a benchmark system, comparing the results with Deterministic MPC and SMPC that excludes Gaussian Processes. The proposed SMPC proves to be more efficient in terms of cost minimization, reference tracking and voltage violationreduction.
001045550 536__ $$0G:(DE-HGF)POF4-1122$$a1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)$$cPOF4-112$$fPOF IV$$x0
001045550 536__ $$0G:(DE-HGF)POF4-1123$$a1123 - Smart Areas and Research Platforms (POF4-112)$$cPOF4-112$$fPOF IV$$x1
001045550 536__ $$0G:(EU-Grant)101096511$$aINTERSTORE - Interoperable opeN-source Tools to Enable hybRidisation, utiliSation, and moneTisation of stORage flExibility (101096511)$$c101096511$$fHORIZON-CL5-2022-D3-01$$x2
001045550 588__ $$aDataset connected to DataCite
001045550 7001_ $$0P:(DE-Juel1)201161$$aDe Din, Edoardo$$b1$$ufzj
001045550 7001_ $$0P:(DE-Juel1)185033$$aZimmer, Marcel$$b2$$ufzj
001045550 7001_ $$0P:(DE-Juel1)179029$$aBenigni, Andrea$$b3$$ufzj
001045550 773__ $$0PERI:(DE-600)3112912-2$$a10.1109/OJCSYS.2025.3601836$$p332-348$$tIEEE open journal of control systems$$v4$$x2694-085X$$y2025
001045550 8564_ $$uhttps://juser.fz-juelich.de/record/1045550/files/APC600704559.pdf
001045550 8564_ $$uhttps://juser.fz-juelich.de/record/1045550/files/Gaussian_Process_Supported_Stochastic_MPC_for_Distribution_Grids.pdf$$yOpenAccess
001045550 8767_ $$8APC600704559$$92025-08-22$$a1200216872$$d2025-08-27$$eAPC$$jZahlung erfolgt$$z985.62 USD
001045550 909CO $$ooai:juser.fz-juelich.de:1045550$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001045550 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)203428$$aForschungszentrum Jülich$$b0$$kFZJ
001045550 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201161$$aForschungszentrum Jülich$$b1$$kFZJ
001045550 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185033$$aForschungszentrum Jülich$$b2$$kFZJ
001045550 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179029$$aForschungszentrum Jülich$$b3$$kFZJ
001045550 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1122$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
001045550 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1123$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x1
001045550 9141_ $$y2025
001045550 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001045550 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001045550 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001045550 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001045550 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
001045550 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001045550 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-20
001045550 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-03T10:39:00Z
001045550 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-03T10:39:00Z
001045550 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-20
001045550 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001045550 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-03T10:39:00Z
001045550 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-20
001045550 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
001045550 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
001045550 920__ $$lno
001045550 9201_ $$0I:(DE-Juel1)ICE-1-20170217$$kICE-1$$lModellierung von Energiesystemen$$x0
001045550 980__ $$ajournal
001045550 980__ $$aVDB
001045550 980__ $$aUNRESTRICTED
001045550 980__ $$aI:(DE-Juel1)ICE-1-20170217
001045550 980__ $$aAPC
001045550 9801_ $$aAPC
001045550 9801_ $$aFullTexts