001     1045550
005     20250930132718.0
024 7 _ |a 10.1109/OJCSYS.2025.3601836
|2 doi
024 7 _ |a 10.34734/FZJ-2025-03546
|2 datacite_doi
024 7 _ |a WOS:001569592700004
|2 WOS
037 _ _ |a FZJ-2025-03546
082 _ _ |a 004
100 1 _ |a Wenzel, Moritz
|0 P:(DE-Juel1)203428
|b 0
|e Corresponding author
245 _ _ |a Gaussian Process Supported Stochastic MPC for Distribution Grids
260 _ _ |a New York, NY
|c 2025
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1758097342_2510
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The efficacy of control systems for distribution grids can be influenced by different sources of uncertainty. Stochastic Model Predictive Control (SMPC) can be employed to compensate for such uncertainties by integrating their probability distribution into the control problem. An efficient SMPC algorithm for online control applications is the stochastic tube SMPC, which is able to treat the evaluation of the chance constraints analytically. However, this approach is efficient only when the calculation of the constraint back-off is applied to a linear model. To address this issue, this work employs Gaussian Processes to approximate the nonlinear part of the power flow equations based on offline training, which is integrated into the SMPC formulation. The resulting SMPC is first validated and then tested on a benchmark system, comparing the results with Deterministic MPC and SMPC that excludes Gaussian Processes. The proposed SMPC proves to be more efficient in terms of cost minimization, reference tracking and voltage violationreduction.
536 _ _ |a 1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)
|0 G:(DE-HGF)POF4-1122
|c POF4-112
|f POF IV
|x 0
536 _ _ |a 1123 - Smart Areas and Research Platforms (POF4-112)
|0 G:(DE-HGF)POF4-1123
|c POF4-112
|f POF IV
|x 1
536 _ _ |a INTERSTORE - Interoperable opeN-source Tools to Enable hybRidisation, utiliSation, and moneTisation of stORage flExibility (101096511)
|0 G:(EU-Grant)101096511
|c 101096511
|f HORIZON-CL5-2022-D3-01
|x 2
588 _ _ |a Dataset connected to DataCite
700 1 _ |a De Din, Edoardo
|0 P:(DE-Juel1)201161
|b 1
|u fzj
700 1 _ |a Zimmer, Marcel
|0 P:(DE-Juel1)185033
|b 2
|u fzj
700 1 _ |a Benigni, Andrea
|0 P:(DE-Juel1)179029
|b 3
|u fzj
773 _ _ |a 10.1109/OJCSYS.2025.3601836
|0 PERI:(DE-600)3112912-2
|p 332-348
|t IEEE open journal of control systems
|v 4
|y 2025
|x 2694-085X
856 4 _ |u https://juser.fz-juelich.de/record/1045550/files/APC600704559.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1045550/files/Gaussian_Process_Supported_Stochastic_MPC_for_Distribution_Grids.pdf
909 C O |o oai:juser.fz-juelich.de:1045550
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)203428
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)201161
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)185033
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)179029
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1122
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1123
|x 1
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-03T10:39:00Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-03T10:39:00Z
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-20
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-03T10:39:00Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)ICE-1-20170217
|k ICE-1
|l Modellierung von Energiesystemen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICE-1-20170217
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21