001045593 001__ 1045593
001045593 005__ 20250825202243.0
001045593 037__ $$aFZJ-2025-03549
001045593 1001_ $$0P:(DE-Juel1)191333$$ade Oliveira Lima, Vitor Alexandre$$b0$$ufzj
001045593 1112_ $$aConference on Superconductivity and Functional Oxides$$cL'Aquila$$d2025-02-19 - 2025-02-21$$gSuperFOx2025$$wItaly
001045593 245__ $$aAnomalous magnetoresistance driven by interfacial proximity in YBCO/SRO and SRO/YBCO heterostructures
001045593 260__ $$c2025
001045593 3367_ $$033$$2EndNote$$aConference Paper
001045593 3367_ $$2DataCite$$aOther
001045593 3367_ $$2BibTeX$$aINPROCEEDINGS
001045593 3367_ $$2DRIVER$$aconferenceObject
001045593 3367_ $$2ORCID$$aLECTURE_SPEECH
001045593 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1756106891_28576$$xInvited
001045593 520__ $$aThe strong correlation and electronic competition in superconductor (SC)/ferromagnet (FM) lead to the appearance of proximity effects in appropriately designed SC/FM thin film heterostructures. Proximity effects emerge at the interface and have different length scales depending on the materials properties. Recently, proximity effects with different characteristics have been reported when considering heterostructures based on conventional SC and FM with either in-plane or perpendicular magnetic anisotropy (PMA). However, there are few contributions regarding proximity effects in heterostructures based on high critical temperature (Tc) SC and FM with PMA. Such effects are of strong interest for applications in spin-triplet Josephson Junctions that involve the manipulation of fluxons, such as superconducting Qubits, for quantum computing and in the development of quantum electronics [1–4]. SrRuO3 (SRO) is a suitable FM candidate due to its strong PMA with narrow domain walls, high spin-orbit coupling, anomalous Hall and Berry effects, and excellent lattice match with the high-Tc SC YBa2Cu3O7-x (YBCO). In this work, we report morphologic, structural, magnetic and magnetotransport results of epitaxial YBCO/SRO and SRO/YBCO heterostructures prepared on low miscut SrTiO3 (001) single crystals using high oxygen pressure sputtering. We have observed proximity effects characterized by (i) a reduction in the SC Tc and (ii) an anomalous magnetoresistance (MR) near the superconductivity onset. We suggest that the change in the MR signal may be related to the competition between the FM and SC states of SRO and YBCO, respectively. Additionally, the MR curves shape at low fields resemble weak localization and antilocalization effects characteristic of semiconductors and topologic insulators at low temperature [5]. Such features may be correlated to the high Ru deficiency in the SRO layer and to a possible orbital reconstruction at the interfaces, which will be further investigated by synchrotron and neutron scattering techniques. This study advances our understanding of the intricate relationship between magnetism and superconductivity in high-Tc SC/FM systems, while illuminating potential future materials for quantum electronics.References:[1] Sedlmayr, N., & Levchenko, A.: Solid State Communications, 327, 114221 (2021).[2] Dua, A., et al.: Physical Review B, 100, 144508 (2019).[3] Klenov, N. V., et al.: Low Temperature Physics, 43, 789-798 (2017). [4] Cuoco and A. Di Bernardo.: APL Materials 10 (2022).[5] H.-Z. Lu and S.-Q. Shen, Spintronics, 9167, 263–273 (2014).
001045593 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
001045593 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
001045593 7001_ $$0P:(DE-Juel1)130633$$aFaley, Michael$$b1$$ufzj
001045593 7001_ $$0P:(DE-Juel1)184662$$aBednarski-Meinke, Connie$$b2$$ufzj
001045593 7001_ $$0P:(DE-Juel1)130754$$aKentzinger, Emmanuel$$b3$$ufzj
001045593 7001_ $$0P:(DE-Juel1)130572$$aBrückel, Thomas$$b4$$ufzj
001045593 909CO $$ooai:juser.fz-juelich.de:1045593$$pVDB
001045593 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191333$$aForschungszentrum Jülich$$b0$$kFZJ
001045593 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130633$$aForschungszentrum Jülich$$b1$$kFZJ
001045593 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184662$$aForschungszentrum Jülich$$b2$$kFZJ
001045593 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130754$$aForschungszentrum Jülich$$b3$$kFZJ
001045593 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130572$$aForschungszentrum Jülich$$b4$$kFZJ
001045593 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
001045593 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
001045593 9141_ $$y2025
001045593 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
001045593 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
001045593 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x2
001045593 980__ $$aconf
001045593 980__ $$aVDB
001045593 980__ $$aI:(DE-Juel1)JCNS-2-20110106
001045593 980__ $$aI:(DE-82)080009_20140620
001045593 980__ $$aI:(DE-Juel1)ER-C-1-20170209
001045593 980__ $$aUNRESTRICTED