001     1045701
005     20250827202242.0
024 7 _ |a 10.1002/hbm.70323
|2 doi
024 7 _ |a 1065-9471
|2 ISSN
024 7 _ |a 1097-0193
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-03561
|2 datacite_doi
037 _ _ |a FZJ-2025-03561
082 _ _ |a 610
100 1 _ |a Muganga, Tobias
|0 P:(DE-Juel1)190780
|b 0
|e Corresponding author
245 _ _ |a Voxel‐Wise or Region‐Wise Nuisance Regression for Functional Connectivity Analyses: Does It Matter?
260 _ _ |a New York, NY
|c 2025
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1756283723_10156
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Removal of nuisance signals (such as motion) from the BOLD time series is an important aspect of preprocessing to obtain meaningful resting-state functional connectivity (rs-FC). The nuisance signals are commonly removed using denoising procedures at the finest resolution, that is the voxel time series. Typically, the voxel-wise time series are then aggregated into predefined regions or parcels to obtain an rs-FC matrix as the correlation between pairs of regional time series. Computational efficiency can be improved by denoising the aggregated regional time series instead of the voxel time series. However, a comprehensive comparison of the effects of denoising on these two resolutions is missing. In this study, we systematically investigate the effects of denoising at different time series resolutions (voxel-level and region-level) in 370 unrelated subjects from the HCP-YA dataset. Alongside the time series resolution, we considered additional factors such as aggregation method (Mean and first eigenvariate [EV]) and parcellation granularity (100, 400, and 1000 regions). To assess the effect of those choices on the utility of the resulting whole-brain rs-FC, we evaluated the individual specificity (fingerprinting) and the capacity to predict age and three cognitive scores. Our findings show generally equal or better performance for region-level denoising with notable differences depending on the aggregation method. Using Mean aggregation yielded equal individual specificity and prediction performance for voxel-level and region-level denoising. When EV was employed for aggregation, the individual specificity of voxel-level denoising was reduced compared to region-level denoising. Increasing parcellation granularity generally improved individual specificity. For the prediction of age and cognitive test scores, only fluid intelligence indicated worse performance for voxel-level denoising in the case of aggregating with the EV. Based on these results, we recommend the adoption of region-level denoising for brain-behavior investigations when using Mean aggregation. This approach offers equal individual specificity and prediction capacity with reduced computational resources for the analysis of rs-FC patterns.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
536 _ _ |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|0 G:(DE-Juel1)JL SMHB-2021-2027
|c JL SMHB-2021-2027
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Sasse, Leonard
|0 P:(DE-Juel1)190306
|b 1
|u fzj
700 1 _ |a Larabi, Daouia
|0 P:(DE-Juel1)180372
|b 2
700 1 _ |a Nieto, Nicolás
|0 P:(DE-Juel1)194707
|b 3
|u fzj
700 1 _ |a Caspers, Julian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 5
|u fzj
700 1 _ |a Patil, Kaustubh R.
|0 P:(DE-Juel1)172843
|b 6
|e Corresponding author
773 _ _ |a 10.1002/hbm.70323
|g Vol. 46, no. 12, p. e70323
|0 PERI:(DE-600)1492703-2
|n 12
|p e70323
|t Human brain mapping
|v 46
|y 2025
|x 1065-9471
856 4 _ |u https://juser.fz-juelich.de/record/1045701/files/Human%20Brain%20Mapping%20-%202025%20-%20Muganga%20-%20Voxel%E2%80%90Wise%20or%20Region%E2%80%90Wise%20Nuisance%20Regression%20for%20Functional%20Connectivity%20Analyses%20.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1045701
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190780
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)190306
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)194707
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)172843
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-19
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-19
|w ger
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:07:28Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:07:28Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-19
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-19
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-19
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-19
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-19
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-19
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-19
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21