001045721 001__ 1045721
001045721 005__ 20250827202242.0
001045721 0247_ $$2doi$$a10.1093/mam/ozaf032
001045721 0247_ $$2ISSN$$a1079-8501
001045721 0247_ $$2ISSN$$a1431-9276
001045721 0247_ $$2ISSN$$a1435-8115
001045721 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03565
001045721 037__ $$aFZJ-2025-03565
001045721 082__ $$a500
001045721 1001_ $$00000-0002-1169-893X$$aWoods, Eric V$$b0$$eCorresponding author
001045721 245__ $$aMapping the Path to Cryogenic Atom Probe Tomography Analysis of Biomolecules
001045721 260__ $$aOxford$$bOxford University Press$$c2025
001045721 3367_ $$2DRIVER$$aarticle
001045721 3367_ $$2DataCite$$aOutput Types/Journal article
001045721 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756276537_9345
001045721 3367_ $$2BibTeX$$aARTICLE
001045721 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001045721 3367_ $$00$$2EndNote$$aJournal Article
001045721 520__ $$aThe understanding of protein structure and interactions remains a fundamental challenge in modern biology. While X-ray and electron-based techniques have provided atomic-level protein configurations, they require numerous molecules for averaged views and lack detailed compositional information crucial for biochemical activity. Atom probe tomography (APT) emerges as a promising tool for biological material analysis, though its capabilities for examining biomolecules in their native, hydrated state remain largely unexplored. We present systematic analyses of amino acids in frozen aqueous solutions using two different nanoporous metal supports across various analysis conditions. Our methodology employs a complete cryogenic workflow, including drop-casting, inert gas glovebox freezing, and specimen transfer via a cryogenically cooled ultra-high vacuum shuttle to both focused ion beam microscopy and atom probes. Using water molecular ion ratios as electrostatic field condition indicators, we investigate amino acid fragmentation and behavior. We evaluate the critical factors for successful biomolecular analysis: support material selection, cryogenic specimen preparation, and optimal data acquisition parameters. This work establishes guidelines for cryogenic APT analysis of biomolecules, advancing the technique's application in biological sciences.
001045721 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001045721 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001045721 7001_ $$00000-0001-9348-4160$$aSchwarz, Tim M$$b1
001045721 7001_ $$00000-0003-1784-7219$$aSingh, Mahander P$$b2
001045721 7001_ $$0P:(DE-HGF)0$$aZhang, Shuo$$b3
001045721 7001_ $$aKim, Se-Ho$$b4
001045721 7001_ $$00000-0003-3793-6569$$aEl-Zoka, Ayman A$$b5
001045721 7001_ $$0P:(DE-Juel1)145165$$aGremer, Lothar$$b6
001045721 7001_ $$0P:(DE-Juel1)132029$$aWillbold, Dieter$$b7
001045721 7001_ $$00000-0002-0584-4769$$aMcCarroll, Ingrid$$b8
001045721 7001_ $$00000-0002-4934-0458$$aGault, Baptiste$$b9$$eCorresponding author
001045721 773__ $$0PERI:(DE-600)1481716-0$$a10.1093/mam/ozaf032$$gVol. 31, no. 4, p. ozaf032$$n4$$pozaf032$$tMicroscopy and microanalysis$$v31$$x1079-8501$$y2025
001045721 8564_ $$uhttps://juser.fz-juelich.de/record/1045721/files/ozaf032.pdf$$yOpenAccess
001045721 909CO $$ooai:juser.fz-juelich.de:1045721$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001045721 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145165$$aForschungszentrum Jülich$$b6$$kFZJ
001045721 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132029$$aForschungszentrum Jülich$$b7$$kFZJ
001045721 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001045721 9141_ $$y2025
001045721 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-17
001045721 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-17
001045721 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-17
001045721 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-17
001045721 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001045721 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMICROSC MICROANAL : 2022$$d2024-12-17
001045721 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-17
001045721 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-17
001045721 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-17
001045721 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-17
001045721 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001045721 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-17
001045721 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-17
001045721 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-17$$wger
001045721 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-17
001045721 920__ $$lyes
001045721 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
001045721 980__ $$ajournal
001045721 980__ $$aVDB
001045721 980__ $$aUNRESTRICTED
001045721 980__ $$aI:(DE-Juel1)IBI-7-20200312
001045721 9801_ $$aFullTexts