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Abstract

A catchment’s runoff response to precipitation largely depends on the antecedent soil moisture, but
also on other hydro-meteorological conditions, e.g., evapotranspiration. Studies investigating the
effects of hydro-meteorological variables on runoff characteristics in catchments with daily temporal
resolution mostly used surrogate measures of soil moisture derived from hydrological models or
remote sensing products. Here, we applied a time series-based pattern search to up to 12 years of daily
in-situ measured soil moisture in three depths (5, 20, and 50 cm) in three headwater catchments, two
of which are located in Germany and one in Austria, to identify key variables influencing runoff
characteristics under similar soil moisture patterns. After detecting groups of similar soil moisture, we
split the corresponding runoff into similar and different patterns based on goodness-of-fit criteria and
analyzed their influencing hydro-meteorological variables with descriptive statistics and Spearman
rank correlation coefficients (p). Results showed that in the two German catchments, wetness-derived
variables, such as the antecedent soil moisture, determined similar runoff patterns under identified soil
moisture patterns. In the Austrian catchment, mean groundwater levels influenced different runoff
patterns, while rainfall characteristics impacted the normalized peak runoff regardless of the runoff
pattern. The proposed method can be used to evaluate hydro-meteorological drivers of event runoff
characteristics under similar soil moisture. In this way, hydrological processes that dominate in either
group of similar or different runoff patterns can be differentiated, providing insights into the potential

predictability of the respective runoff pattern.
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1 Introduction

The runoff response to a rainfall event at the catchment scale is driven by climate and physical
catchment characteristics (Chen et al., 2020a, 2020b; Jencso & McGlynn, 2011). It is the most
comprehensive signature of catchment behavior since it integrates information about different runoff
generation processes (Bloschl et al., 2013). Event runoff responses are spatiotemporally variable as
they depend on antecedent soil moisture (e.g., Penna et al., 2011; Saffarpour et al., 2016), rainfall
characteristics (Blume et al., 2007), and other hydro-meteorological drivers, e.g., evapotranspiration
(Guo et al., 2017a; Rossi et al., 2016). Previous studies evaluated runoff generation mechanisms (e.g.,
Gaal et al., 2012, 2015; Stein et al., 2020; Tarasova et al., 2018a), runoff prediction in ungauged
basins (e.g., Parajka et al., 2007), and nutrient transport processes (Grimaldi et al., 2009; James &
Roulet, 2007). Thus, exploring drivers of event runoff characteristics contributes to the understanding
of catchment-scale hydrological processes and is crucial for informed decision-making not only in
water resources management, but also in hydrological modeling (Hrachowitz et al., 2013) and for the
development of measurement strategies and their validation (Brocca et al., 2012; Mohanty et al.,

2017).

However, studies assessing the spatiotemporal dynamics of runoff responses and the factors that drive
the fast mobilization of water stored in the catchment for a long time still remain scarce (Kirchner,
2024). Although runoff dynamics were evaluated in single (e.g., Guo et al., 2017b) and multiple
catchments with sizes ranging from approx. 5 to 20,000 km? (Gaal et al., 2012; Merz & Bloschl, 2009;
Tarasova et al., 2018b; Zheng et al., 2023), only some of them analyzed runoff events based on a large
sample of events (e.g., Ali et al., 2010; Tarasova et al., 2018b). At the event scale, respective event
characteristics such as the event runoff coefficient (ERC), defined as the ratio of runoff to
precipitation, and their driving factors were assessed. Climatic variables, including potential
evapotranspiration (PET) and the aridity index, were found to be negatively correlated with ERC,
highlighting the role of PET in mediating the long-term water storage in soils (Merz & Bloschl, 2009;
Rossi et al., 2016; Tarasova et al., 2018b; Zheng et al., 2023). However, Guo et al. (2017b) found in

an Australian catchment (27 km?) that rather than climatic variables, daily rainfall intensity had a
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large influence on daily runoff. Similarly, ERC were positively correlated with the mean annual
precipitation in catchments across Austria (Merz et al., 2006; Merz & Bloschl, 2009) and with event
rainfall volumes in large-scale catchments in Germany that had limited storage capacity (Tarasova et
al., 2018a). On the contrary, Zheng et al. (2023) found a weak correlation between rainfall volumes
and ERC in catchments with large storage capacity, while Rossi et al. (2016) showed that daily

rainfall variability was only a secondary driver of daily runoff characteristics.

Besides the solely rainfall-derived variables, event runoff variability at the daily scale may be linked
to the mean annual or seasonal partitioning of precipitation into evapotranspiration and runoff via soil
moisture dynamics (Latron & Gallart, 2008; Rossi et al., 2016). In Austria (Merz & Bloschl, 2009)
and the UK (Zheng et al., 2023), ERC and soil moisture followed the same seasonality. In this regard,
antecedent soil moisture (4SM) has been shown to strongly influence catchment-scale runoff
characteristics (e.g., Penna et al., 2011; Saffarpour et al., 2016). For instance, Singh et al. (2021)
investigated soil moisture and runoff responses to rainfall of hillslopes in a headwater catchment and
found that ASM and rainfall depth and intensity controlled the relationship between soil moisture and
runoff. Furthermore, a nonlinear threshold behavior of the runoff response has frequently been
observed in catchments where runoff significantly increased after a certain soil moisture threshold
was exceeded (Detty & McGuire, 2010; Jencso et al., 2009; Penna et al., 2011; Stockinger et al.,

2014).

Despite these advancements, relatively few studies used soil moisture observations at a high
spatiotemporal resolution over a long time span to characterize the rainfall-runoff process at the
catchment scale (Singh et al., 2021; Vichta et al., 2024). Mostly substitute measures of soil moisture
were used, e.g., soil moisture derived from hydrological models or remote sensing products, without
discretization of different depths (e.g., Yao et al., 2020; Zheng et al., 2023). Therefore, a better
representation of soil moisture is necessary to quantify key influencing variables on the runoff
response (Rossi et al., 2016). By clustering similar runoff responses, Hovel et al. (2024a) found that
the respective temporal pattern of soil moisture was an important indicator of similar runoff

responses. However, they did not investigate temporal patterns in the entire soil moisture time series
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itself, i.e., independent of the times of clustered runoff responses. Examining temporal patterns in
both runoff and soil moisture at the same time could help to comprehensively understand catchment-

scale rainfall-runoff processes (Bloschl, 2006).

In this study, we addressed this gap by using repeating temporal patterns in soil moisture and runoff at
the catchment scale to investigate the interaction between hydro-meteorological variables and event
runoff characteristics. To do this, we adopted the approach suggested by Hovel et al. (2024a), but
instead of clustering similar runoff responses, we searched for soil moisture patterns averaged over
the catchment area in three small-scale catchments providing high resolution in-situ soil moisture
observations. For each group of similar soil moisture, we divided the respective runoff into similar
and different patterns by means of goodness-of-fit criteria to investigate event runoff characteristics
and their drivers separately. Therefore, the objectives of the present study were to (1) detect repeating
temporal patterns of in-situ soil moisture observations, (2) compare the characteristics of similar and
different runoff patterns in terms of their major hydro-meteorological drivers, and (3) assess the
impact of hydro-meteorological variables on runoff characteristics under similar soil moisture

identified in the first objective.

2 Study area and data

2.1 Study sites

Based on their spatiotemporally high-resolution data, we selected three small-scale catchments in

Germany and Austria (Figure 1).
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Figure 1. Location and land use maps of the three study catchments in Germany and Austria
indicating measurements sites with (a) Wiistebach (partly deforested in 2013), (b) Rollesbroich

(extensively managed grassland), and (c) Petzenkirchen (agriculture) (Hovel et al., 2024a).

The Wiistebach (38.5 ha, forest) and Rollesbroich (40 ha, grassland) headwater catchments are
located in the Eifel region of western Germany and belong to the Terrestrial Environmental
Observatories network (TERENO) (Bogena et al., 2018). Due to their proximity, they are
characterized by a similar climate, with a mean annual precipitation of about 1200 and 1033 mm yr!,
mean annual temperature of 7.0 and 7.7°C, and mean annual discharge of about 700 and 520 mm yr!
in Wiistebach and Rollesbroich, respectively (Zacharias et al., 2011). Soil types of Cambisol and
Planosol are predominant in the hillslope zone of the Wiistebach catchment, while the riparian zone
(10% of the catchment) is characterized by Gleysols and Histosols. Similarly, gleyic Cambisols
prevail further upstream in Rollesbroich, while Stagnosols dominate closer to the outlet (Bogena et
al., 2018). Soil depths in the two catchments range from less than 1 m up to a maximum of 2 and 1.5

m in Wiistebach and Rollesbroich, respectively (Gebler et al., 2019; Graf et al., 2014). In Wiistebach,

6
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periglacial layers cover the bedrock (Borchardt, 2012) which consists of Devonian shales and
sandstone (Richter, 2008), while in Rollesbroich, the bedrock is covered by weathered saprolite
(Gebler et al., 2019). About 21 % (8 ha) of the Wiistebach catchment area, mainly affecting the
riparian zone, was deforested in September 2013 (Bogena et al., 2018; Wiekenkamp et al., 2016a).
After the clear-cutting, a natural reforestation took place. In Rollesbroich, a drainage system affecting
fast runoff processes in the catchment is in the source area (Gebler et al., 2019). The Hydrological
Open Air Laboratory (HOAL) Petzenkirchen catchment (66 ha, agriculture) lies in the western part of
Lower Austria and has a mean annual precipitation, temperature, and discharge of about 823 mm yr!,
9.5 °C, and 195 mm yr!, respectively. The catchment has Gleysols in the riparian zone, while
Cambisols and Planosols predominate in most other areas. Soils are shallow and characterized by
medium to poor infiltration capacity, with the underlying bedrock consisting of tertiary sediments of
the Molasse zone and fractured siltstone (Bloschl et al., 2016). Tile drains are installed in around 15
% of the catchment area and 25 % of the stream is piped, leading to complex, area-specific flow

mechanisms (Vreugdenhil et al., 2022).

2.2 Data

We used high-resolution observation data, including precipitation, runoff, groundwater levels, and in-
situ soil moisture measurements in 5, 20, and 50 cm depth. Figure 2 displays the data for the
Wiistebach catchment, while the data for Rollesbroich and Petzenkirchen are shown in Figures S1 and
S2 in the Supporting Information, respectively. A detailed description of the data pre-processing and

quality control can be found in section 3 “Data and methods” in Hovel et al. (2024a).

2.2.1 Precipitation and runoff

Daily runoff and precipitation was measured from July 2009 to December 2021 in Wiistebach, from
January 2010 to October 2022 in Rollesbroich, and from May 2010 to December 2019 in
Petzenkirchen. In Wiistebach and Rollesbroich, runoff was recorded with a V-notch weir for low

flows and a Parshall flume for medium to high flows (Bogena et al., 2015; Qu et al., 2016), while in
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Petzenkirchen, an H-flume was used (Bloschl et al., 2016). Daily precipitation data for Wiistebach
was provided by the Monschau-Kalterherberg meteorological station (DWD, station number 3339).
For Rollesbroich, precipitation was acquired from a rain gauge (weighing OTT Pluvio) installed in
July 2013 in the center of the catchment and from a Hellmann-type tipping bucket at the outlet from
January 2010 to July 2013. Due to low spatial variability between the four available rain gauges
(weighing OTT Pluvio) in Petzenkirchen (Vreugdenhil et al., 2022), we calculated daily precipitation

as the arithmetic mean of the four gauges.

2.2.2 Soil moisture

Daily soil moisture was available in Wiistebach from July 2009 to December 2021, in Rollesbroich
from March 2011 to October 2022, and in Petzenkirchen from July 2013 to December 2019. We used
soil moisture data from the SoilNet wireless sensor network installed in Wiistebach in 2009, recorded
every 15 min at 5, 20, and 50 cm depth at 150 sites with EC-5 soil moisture sensors (METER Group
GmbH, Munich, Germany; Rosenbaum et al., 2012), of which we selected 108 for further analysis
based on previous quality controls (Bogena et al., 2010; Wiekenkamp et al., 2016a). In Rollesbroich,
soil moisture was measured using a SoilNet equipped with SPADE soil moisture sensors (Qu et al.,
2013) from 2011 at 87 sites at the same depths until May 2015. Due to technical problems, the
SPADE sensors were replaced by SMT100 soil moisture sensors (Bogena et al., 2017) at 41 SoilNet
sites from 2014 onwards, of which we selected 33 stations with continuous data. Data from 2011-
2015 was sourced from Qu et al. (2016), and later data from the TERENO data portal (TERENO,
2024). In Petzenkirchen, 32 SoilNet stations equipped with SPADE soil moisture sensors were
operated from mid-2013 to late 2021, of which we selected 29 sensors after checking for continuity
and outliers. We calculated spatial averages of soil moisture in the three depths over the catchment
area in Rollesbroich and Petzenkirchen, while in Wiistebach, we separated the catchment area into a
riparian and hillslope zone, as the two zones can be more accurately delineated based on the
predominant soil types compared to the other two catchments. Additionally, we calculated a depth-
weighted mean for a soil depth of 1 m assuming a depth-dependent soil moisture variability in all

catchments, with the largest weight of 0.7 given to the measurement in 50 cm, and weights of 0.2 and



180 0.1 to the measurements in 20 and 5 cm, respectively. Since additional soil moisture measurements in
181 10 cm in Petzenkirchen were available, we included them into the depth-weighted mean accordingly,

182  with 5 and 10 cm each receiving a weight of 0.05.

183  2.2.3  Groundwater level

184  In Wiistebach, we selected two groundwater level measurement sites (Bogena et al., 2015) that

185  showed the best continuity from January 2010 to March 2021. While the station GWLO003 is situated
186  upstream near the stream in the deforested zone, GWLO01 is further downstream in the forested area
187  (Figure 1). In Petzenkirchen, station HO9 recorded groundwater levels from May 2011 to December
188 2019 and lies in the riparian zone on a lower slope, representing the transition between riparian and
189  hillslope zone (Pavlin et al., 2021; Vreugdenhil et al., 2022). We also selected piezometer BPO1

190  which is situated close to the stream, with data from December 2012 to December 2019 and minimal
191  gaps. Other stations in Petzenkirchen behaved similarly to either H09 or BP01, so that we anticipated
192  the two piezometers to be representative for the catchment. As the groundwater in Rollesbroich is

193  confined and restricted to deep, fractured rocks, no groundwater level observations were available.
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Figure 2. Time series of observed daily precipitation (grey bars from top), runoff at the catchment’s

outlet (blue), volumetric soil moisture in 5, 20, and 50 cm for the hillslope zone (dark grey) and the

riparian zone (light grey), and groundwater level for station GWL 001 (dark grey) and GWLO003 (light

grey) in the Wiistebach catchment. Grey bands for soil moisture data indicate the spatially-averaged

soil moisture value + the standard deviation.

3 Methods

3.1 Time series-based soil moisture pattern search

We analyzed the influence of hydro-meteorological variables on event runoff characteristics by

implementing a time series-based pattern search in each catchment individually (Figure 3).

(a) Rainfall-runoff event identification
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Figure 3. Flow chart of the time series-based pattern search in soil moisture and overview of the

runoff characteristics and hydro-meteorological variables used in the analysis.
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3.1.1 Runoff event identification

We identified rainfall-runoff events (Figure 3a) by employing the Detrending Moving-average Cross-
correlation Analysis-Event Separation Routine (DMCA-ESR; Giani et al., (2022)). The method does
not require subjective parameter choices and has been successfully applied in other catchment-scale
studies (e.g., Zheng et al., 2023). Further, it does not require an a priori base flow separation; the base
flow component is separated after identification for each event by taking the minimum runoff before
the rising limb (Giani et al., 2022). We excluded events falling below the mean runoff, which has
been adopted by previous studies as a meaningful threshold for runoff event identification (e.g., Hovel

et al., 2024a; Zheng et al., 2023).

3.1.2  Similarity of soil moisture and runoff patterns

For each runoff event, we extracted the concurrent depth-weighted mean soil moisture (Figure 3b) and
used it to find similar soil moisture patterns at different times in the same catchment (Figure 3c¢). For
this, we applied the Matrix Profile method which was developed to robustly identify all patterns that
match a specific pattern in the time series (Madrid et al., 2019; Yeh et al., 2016). Trivial matches such
as very close ones (+ 25% of the pattern length) are automatically excluded, significantly reducing the
computation time. For patterns to match, pre-defined similarity criteria had to be met. We defined two
criteria to assess the similarity of soil moisture patterns: (1) they exceeded a Spearman rank
correlation coefficient threshold of 0.76, 0.74, and 0.53 in Wiistebach, Rollesbroich, and
Petzenkirchen, respectively (adapted from Hovel et al., 2024a), and (2) the Euclidean distance
between them was lower than 5 Vol. % to account for absolute deviations between patterns. The
correlation coefficient thresholds represent the mean correlation between soil moisture patterns of
similar runoff events (Hovel et al., 2024a) and were therefore used as a threshold. Consequently,
groups of similar soil moisture patterns were derived. Since the groups were based on the depth-
weighted mean soil moisture, we additionally assessed the relationship between soil moisture patterns
in the three measurement depths of 5, 20, and 50 cm by calculating the Pearson correlation coefficient

(r) and evaluating its significance on a 95% confidence level (p < 0.05).
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For each group of similar soil moisture patterns, we divided the respective runoff into similar and
different patterns based on goodness-of-fit criteria (Figure 3e). We combined the Nash-Sutcliffe-
Efficiency (NSE, Eq. 1), with a volume error (VE, Eq. 2) to form the Nash-Volume Error (NVE) as

suggested by Lindstrom (1997):

Yiz1(Q1 — Q2)°

NSE =1 — — 1
(=) )
VE — Z?=1LQ1 - Qzl (2)
i=1 @2
NVE = NSE — |VE| 3)

Q, and Q, represent the respective runoff events identified, with Q denoting the mean over the event
duration (n days). The parameter y serves as a weighting factor for the volume error set to 0.1
according to Lindstrom (1997). We defined events to be similar if the Nash-Volume Error (NVE)
exceeded a threshold of 0.65 (Moriasi et al., 2007; Saleh et al., 2000; Singh et al., 2005). In the
subsequent analysis, we focused only on groups of soil moisture patterns for which both similar and

different runoff patterns could be identified.

3.2 Runoff characteristics

For all runoff patterns, we assessed four descriptive characteristics (Table 1): The event runoff
coefficient (ERC), the peak runoff normalized by the long-term mean runoff (QOmax), the ratio of
runoff volume to peak runoff (7s), and the recession coefficient (Rc). The latter was derived from
event-based recession analysis, which characterizes the nonlinear decrease in runoff after a peak over
time, typically described by a power law differential equation (Brutsaert & Nieber, 1977):

_c _ _ b
dt aQ (42)

Q(®) = (@~ — (1 = byat) =5 (4b)
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dt

length of the recession segment, and a and b are the recession model parameters.

dq . . . . .
29 is the rate of change in runoff Q, Q, is the runoff at the start of the recession segment, ¢ is the

In contrast to classical recession analysis, which aims at a single parametrization of the recession

model, the event-based analysis enables assessing variations in the catchment’s runoff response over

time with respect to e.g., different wetness states (Biswal & Nagesh Kumar, 2014; Patnaik et al.,

2015). Previous studies showed that nonlinear fitting to absolute values of the recession segment

produces reliable estimates of recession scale parameter a and exponent b (Chen & Krajewski, 2016

b

Dralle et al., 2015, 2017; Wittenberg & Sivapalan, 1999), so that we applied nonlinear fitting.

Because reliable comparison of recession coefficients between events is only possible for the

exponent b (Berghuijs et al., 2016a; Dralle et al., 2017), we used b as the recession coefficient (Rc) in

our analysis. We calculated the four runoff characteristics for each runoff pattern individually and

then averaged them over each group of similar soil moisture patterns (Figure 3d). Furthermore, we

calculated mean runoff characteristics of similar and different runoff patterns separately, and indicated

the coefficient of variation (CV) for all respective mean characteristics.

Table 1. Event runoff characteristics used as target variables.

Variable
Event runoff
coefficient

Event
timescale

Recession
coefficient

Normalized
peak runoff

Abbreviation = Definition

ERC[-]

Ts [days]

Re [-]

Omax [-]

Ratio of the event runoff
volume [mm] to the event
rainfall volume [mm]
Ratio of event runoff
volume [mm)] to the peak
runoff [mm d']

Exponent b in the power
law recession model

Maximum event runoff
[mm d'] normalized by the
long-term mean runoff [mm

d']

13

Equation
ERC = Qvol
onl
Ts = Qvol
Qpeak
do b
P
Qpeak
Qmax = pQEa

References
Merz et al., 2006;
Sherman, 1932

Gaal et al., 2012

Brutsaert &
Nieber, 1977,
Dralle et al.,
2015, 2017
Tarasova et al.,
2018b



270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

3.3  Hydro-meteorological variables

Rainfall-derived variables included the event rainfall sum Psum [mm], the maximum event rainfall
intensity Pmax [mm d™'], and the event mean rainfall intensity Pint [mm d'']. Furthermore, we
calculated the event mean potential evapotranspiration PET [mm d!] with the Penman-Monteith
equation. In terms of wetness-derived variables, we assessed the impact of antecedent soil moisture
one day before the event ASMS5, ASM20, ASM50 [Vol. %] and the event mean soil moisture
SM5mean, SM20mean, SM50mean [Vol. %] in measurement depths of 5, 20, and 50 cm, respectively.
Additionally, we calculated the groundwater level one day before the event GWLpre [cm bgs] and the
event mean groundwater level GW_Lmean [cm bgs] in Wiistebach and Petzenkirchen. Groundwater
level measurement gaps at the daily scale amounted to approx. 15 % and 4 % at stations GWL001 and
GWLO003 in Wiistebach, respectively, and 6 % and 5 % at stations HO9 and BPO1 in Petzenkirchen,
respectively. We allocated meteorological seasons of spring (March, April, May), summer (June, July,
August), autumn (September, October, November), and winter (December, January, and February) to
all patterns based on their day of occurrence. To analyze how hydro-meteorological variables
influenced the runoff patterns in respective seasons, we used the Spearman rank correlation

coefficient (p) and evaluated its significance based on a 95 % confidence level (p < 0.05).

4 Results
4.1 Time series-based soil moisture pattern search

A total of 100, 95, and 120 runoff events and concurrent soil moisture patterns (Figure 3b) were
extracted in Wiistebach, Rollesbroich, and Petzenkirchen, respectively. Only considering soil
moisture patterns for which similar and different runoff patterns were identified (Figure 3e), 62, 16,
and 55 groups of similar soil moisture patterns were formed in Wiistebach, Rollesbroich, and
Petzenkirchen, respectively. Within each group, we detected the highest number of soil moisture
patterns in Wiistebach, followed by Petzenkirchen and Rollesbroich. Particularly in Wiistebach, we

observed a high average number of matches for one soil moisture pattern (Table S1 in Supporting
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Information). Thus, soil moisture patterns were not restricted to times when runoff events were
identified but were distributed across the entire time series. While in the two German catchments,
most groups consisted of wetting and subsequent drying patterns, soil moisture patterns in
Petzenkirchen mainly comprised wetting-up patterns with higher variability within one group than in
the other catchments, as shown by the broad confidence intervals (Figure S3 in Supporting
Information). In Rollesbroich, we particularly observed consistent wetting-up and drying patterns of
soil moisture with one distinct peak for most groups (Figure 4). Although in Wiistebach, most groups
showed a similar pattern to Rollesbroich, there were also patterns with slower drying after the peak

compared to the rest of the groups (Figure S4 in Supporting Information).
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Figure 4. Groups of similar soil moisture patterns in the Rollesbroich catchment, indicating the mean

soil moisture in each group and the corresponding 95% confidence interval.

Regarding the different soil moisture measurement depths for the identified patterns, we found a

strong significant correlation between the soil moisture in 5 cm and 20 cm depth in Wiistebach (r =
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0.83) and Petzenkirchen (r = 0.72), but not in Rollesbroich (r = 0.31). While correlation coefficients
remained low between soil moisture in 5 cm and 50 cm in Rollesbroich and Petzenkirchen (Figure S5
in Supporting Information), soil moisture in the two layers was significantly correlated in Wiistebach
at 0.61. The percentages of the runoff patterns attributed to either the group of similar or different
runoff for each group of similar soil moisture patterns differed between the catchments. In
Petzenkirchen, the average number of similar runoff patterns for one soil moisture pattern was higher
than the number of different patterns, in contrast to the other two catchments (Table S1 in Supporting

Information).

4.2 Runoff characteristics and their seasonality

Wiistebach and Rollesbroich had overall comparable runoff characteristics under similar soil moisture
patterns, particularly in terms of mean event runoff coefficients ERC (0.25 and 0.27, respectively) and
timescales 7 (5.08 and 4.42 days, respectively) (Table 2). In contrast, Petzenkirchen showed lower
mean ERC and shorter 7's compared to the other two catchments with 0.09 and 2.38 days,
respectively, with ERC having the largest coefficient of variation (CV) of all runoff characteristics in
the catchment at 0.73. In Wiistebach, we observed the highest CV for the recession coefficient Rc
with 1.20, while in Rollesbroich, CV was largest for the normalized peak runoff Omax at 0.80 (Table

2).

Table 2. Descriptive statistics of runoff characteristics averaged over all runoff patterns in the
respective groups of similar soil moisture patterns detected in the three catchments, including their

mean and coefficient of variation (CV).

Wiistebach Rollesbroich Petzenkirchen
ERC [-] Mean 0.25 0.27 0.09
(O\Y 0.88 0.72 0.73
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Ts [days] Mean 5.08 4.42 2.38

Ccv 0.49 0.46 0.32
Re [-] Mean 0.75 0.98 1.02

Ccv 1.20 0.76 0.41
Omax [-] Mean 4.71 6.37 18.61

Ccv 1.08 0.80 0.56

333

334 The runoff characteristics in the three catchments varied throughout the year: Event runoff

335  coefficients ERC in Wiistebach and Petzenkirchen followed a seasonal pattern, also for the

336  differentiation between similar and different runoff patterns, with ERC being highest in winter and
337  lowest in summer (Figure 5). In contrast, ERC in Rollesbroich varied considerably between the two

338  groups of runoff patterns in spring.

(@) 10

0.5 | | | . i

ERC [-]

_ i

spring summer autumn winter spring summer autumn winter

0.0

339
340  Figure 5. Event runoff coefficients ERC for spring, summer, autumn, and winter, including all runoff
341  patterns in the left column and separated between similar (grey) and different (light grey) runoff

342 patterns in the right column for (a) Wiistebach, (b) Rollesbroich, and (¢) Petzenkirchen.

343

17



344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Ts in Wiistebach and Rollesbroich followed the same seasonality as ERC, with longer T’ in spring and
winter compared to the rest of the year (Figure S6 in Supporting Information). In Rollesbroich, the
same seasonality was also evident for Omax (Figure S7 in Supporting Information). In contrast, 7’s in
Petzenkirchen showed no major seasonal variations (CV=0.32) and was, on average, shorter (~2 days)
than in Wiistebach (~5 days) and Rollesbroich (~4.5 days). Similarly, we did not detect a distinct
seasonal pattern of the recession coefficient Rc in Petzenkirchen. On average, we found the largest Rc
in Petzenkirchen in winter, whereas in Wiistebach and Rollesbroich, Rc were highest in the summer
(Figure S8 in Supporting Information). In all three catchments, we generally observed shorter Ts and
lower Rc for similar runoff patterns compared to different ones. Furthermore, the variability of Omax
was lower in the group of similar runoff patterns than in the group of different patterns in all

catchments. This was particularly evident in Rollesbroich, with a CV of 0.51 and 0.86, respectively.

4.3 Linking hydro-meteorological variables and their seasonal dynamics with runoff

characteristics

4.3.1 Similar runoff patterns

For similar runoff patterns, all runoff characteristics were, on average, mostly significantly correlated
with wetness-derived variables in Wiistebach (4SM50, SM50mean, and GWLmean) and Rollesbroich
(ASM5 and SM5mean), while in Petzenkirchen only ERC and Rc were primarily correlated with these.
Figure 6 displays the Spearman rank correlation coefficients (p) between runoff characteristics and
hydro-meteorological variables in Wiistebach, differentiated between similar and different runoff

(Figures S9 and S10 for Rollesbroich and Petzenkirchen, respectively, in Supporting Information).
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Figure 6. Heatmap showing Spearman rank correlation coefficients (p) between event runoff
characteristics and selected hydro-meteorological variables (p < 0.05), separated between groups of
similar (e.g., ERC.sim) and different (e.g., ERC.dif) runoff patterns in the Wiistebach catchment. The

size and color of the dots both indicate the value of the correlation coefficient for better visualization.

ERC was significantly correlated with ASM in 50 cm in both the riparian (p = 0.58) and hillslope (p =
0.58) zone in Wiistebach and in Petzenkirchen (p = 0.56). In comparison, in Rollesbroich it was
correlated with ASM in 5 cm (p = 0.52). In all catchments, we observed a threshold relationship of
ERC with ASM in the respective depths, with ERC and ASM being seasonally related for similar
runoff patterns: Soil moisture in summer rarely reached a threshold after which ERC substantially
increased, so that ERC generally remained low. In contrast, the largest ranges of ERC with values
from 0 to 1 occurred in winter (Figure 7). The thresholds in 4SM were approx. 48 and 33 Vol. % in 50
cm soil depth in the riparian and hillslope zone of Wiistebach, respectively, and 48 and 38 Vol. % in 5

and 50 cm in Rollesbroich and Petzenkirchen, respectively (Figure 7).
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Figure 7. Relationship between antecedent soil moisture ASM and event runoff coefficient ERC in (a)
the riparian zone and (b) hillslope zone of the Wiistebach catchment in 50 cm (4SM50), (¢) in the
Rollesbroich catchment in 5 cm (4SM5) and (d) in the Petzenkirchen catchment in 50 cm (4ASM50),

for similar runoff patterns.

In addition to ASM, we found a significant correlation between ERC and mean event groundwater
levels (GWLmean) at both piezometers in Wiistebach (p = 0.71 and p = 0.60 at GWL001 and
GWLO003, respectively). Similarly, ERC and GWLmean at HO9 and BPO1 were significantly
correlated in Petzenkirchen (p = 0.39 and p = 0.59, respectively) with seasonal differences of higher
groundwater levels and ERC in the winter season compared to the other seasons (Figure S11 in
Supporting Information). Furthermore, the nonlinearity of recession, Rc, had the highest correlations
with wetness-derived variables compared to the other hydro-meteorological variables in all three
catchments for similar runoff patterns. In Wiistebach and Rollesbroich, soil moisture in 50 cm had a
major influence on Rc, with a significant correlation between Rc and antecedent and mean soil

moisture in the hillslope zone in Wiistebach (p = -0.47), and mean soil moisture in Rollesbroich (p = -
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0.44) in the respective depth. In addition, Rc was correlated with GWLmean at both piezometers in
Wiistebach (p = -0.47) and in Petzenkirchen with mean and pre-event GWL at piezometer H09. While
we identified rainfall-derived variables as the sole drivers of Omax in Petzenkirchen, correlation
coefficients between Ts and hydro-meteorological variables were generally low for similar runoff
patterns in the catchment (Figure S10 in Supporting Information). Conversely, groundwater levels and
ASM in deep layers had an additional impact on Omax and Ts in Wiistebach. In Rollesbroich, mean
soil moisture in 5 cm was the most important factor influencing the two runoff characteristics, with a

significant correlation coefficient of 0.59.

4.3.2 Different runoff patterns

In Wiistebach and Rollesbroich, correlation coefficients were in most cases lower in the group of
different runoff patterns compared to the similar ones. If not, differences were marginal (e.g., p = 0.15
and p = 0.20 between ERC and Pmax in Wiistebach for similar and different runoff patterns,
respectively). Meanwhile, influencing factors for Omax shifted from wetness-derived to rainfall-
derived variables in both catchments (Figure 6 and Figure S9 in Supporting Information): We found a
significant positive correlation between Omax and rainfall volumes Psum and intensities Pint for
different runoff patterns, with values of 0.58 and 0.56 for Psum and 0.58 and 0.53 for Pint in
Wiistebach and Rollesbroich, respectively. Furthermore, the threshold relationship between £RC and
ASM observed in both catchments was not as pronounced for different runoff patterns (Figure S12 in
Supporting Information) as for similar patterns. For instance, we observed an increased ERC of 0.6
also for low ASM in the hillslope zone (4SM50 around 33 Vol. %) in the Wiistebach catchment. On
the contrary, Petzenkirchen also showed a pronounced threshold relationship between ERC and
ASM50 for different runoff patterns (Figure S12 in Supporting Information). In general, we found
higher correlation coefficients for different rather than similar runoff patterns more frequently in
Petzenkirchen than in the other two catchments. This was particularly evident for the runoff
characteristics of ERC, Rc, and Omax: Correlation coefficients were stronger between ERC and
groundwater levels in Petzenkirchen for different runoff patterns compared to similar ones. Likewise,

we observed higher correlations between Rc and wetness-derived variables for different runoff
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patterns than similar ones, with mean and antecedent soil moisture in 20 cm having the highest
correlation with Re (p = 0.54). In addition to rainfall-derived variables being significantly correlated
with Omax, wetness-derived variables showed increased correlations with Omax for different runoff
patterns compared to similar ones in Petzenkirchen (Figure S10 in Supporting Information). In
contrast, in the two German catchments, particularly in Rollesbroich, wetness-derived variables did

not show any significant correlation with Omax for different runoff patterns.

5 Discussion

5.1 Temporal patterns in soil moisture and their linkage to respective runoff

patterns

We showed that different soil moisture patterns extracted based on runoff events were recurrent over
time in the catchments studied. Since we conducted the pattern search over the entire time series
based on the pre-defined similarity criteria, soil moisture patterns were additionally identified
independently of runoff events. Therefore, we detected similar soil moisture patterns also during dry
conditions, because not only rainfall-driven wetting but also radiation-driven drying influences soil
moisture dynamics (Liu et al., 2024; Milicke et al., 2020). We found the largest number of similar
soil moisture patterns in Wiistebach, indicating low variability and therefore high recurrence of the
wetting and subsequent drying cycles in soil moisture. Although soil moisture patterns in Rollesbroich
showed similar wetting-up and drying cycles (Figure 4), comparatively few repeating soil moisture
patterns were found in the catchment. As soil moisture patterns in 5 cm were not well correlated with
those in 20 cm (r = 0.31) or 50 cm depth (r = 0.39), the large weights of both 20 cm and 50 cm soil
moisture in the depth-weighted mean might have resulted in fewer recurrent soil moisture patterns in
Rollesbroich. In contrast to the other two catchments, patterns of similar soil moisture in
Petzenkirchen were more variable, as indicated by the broad confidence intervals within the groups
(Figure S3 in Supporting Information). The large variability of soil moisture patterns within one group

may also result from the comparably low correlation coefficient we set as a similarity criterion for the
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soil moisture patterns to match in Petzenkirchen (p = 0.53). Most patterns did not follow a clear
wetting and drying, but rather a continuous wetting-up, with the soil moisture peak following the
runoff peak (Figure S3 in Supporting Information), as also reported by Pavlin et al. (2021) for

Petzenkirchen.

As for the respective runoff patterns, the majority of runoff under similar soil moisture patterns in the
German catchments was classified as different (Table S1 in Supporting Information), showing that
runoff patterns were variable over time. In contrast, in Petzenkirchen, although similar soil moisture
patterns showed high variability, the group of similar runoff was on average larger than the one of
different patterns. This suggests an increased number of similar runoff patterns in the catchment
compared to Wiistebach and Rollesbroich, as also indicated by the high number of clusters containing
similar runoff events (Hovel et al., 2024a). Even though runoff mechanisms in different sub-parts of
the Petzenkirchen catchment are complex, as shown by Vreugdenhil et al. (2022), our study
demonstrates that the catchment average runoff response at the outlet shows a high degree of

repeatability over time.

5.2 Differentiation between similar and different runoff patterns under similar soil

moisture patterns

In the catchments studied, we observed a change in major driving factors of runoff characteristics
from similar to different runoff patterns. While similar runoff patterns were predominantly influenced
by wetness-derived variables in Wiistebach and Rollesbroich, the normalized peak runoff of different
patterns was mainly controlled by rainfall volumes and intensities. Previous studies suggested that
intensity-driven, i.e., rainfall-driven, runoff responses may be associated with infiltration excess flow
mechanisms, while storage-driven responses may result from saturation excess mechanisms (Ali et al.,
2015; McDonnell, 2013; McGrath et al., 2007). In Wiistebach and Rollesbroich, saturation excess
flow may thus only be attributed to similar runoff patterns, which are mainly driven by storage-driven,

i.e., wetness-derived, variables. In contrast to the German catchments, differing between influencing
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variables of similar and different runoff patterns under similar soil moisture in Petzenkirchen was
more complex. We found that correlation coefficients between hydro-meteorological variables and
runoff characteristics were more often higher for different runoff patterns than for similar ones,
suggesting that the underlying temporal soil moisture pattern was not the dominant factor in defining
the runoff response pattern in the catchment, as also reported by Hovel et al. (2024a). While both
rainfall- and wetness-derived variables impacted characteristics of similar runoff patterns, mean
groundwater levels became even more important in the group of different compared to similar runoff
patterns. The key role of groundwater-derived variables for different runoff patterns implies that the
water stored in groundwater bodies and corresponding hydraulic conductivities determined the overall

shape of the hydrograph at the outlet in Petzenkirchen.

5.3 Hydro-meteorological drivers of event runoff characteristics and their linkage to

catchment wetness states

5.3.1 Influence of rainfall-derived variables on runoff characteristics

Rainfall characteristics, particularly Psum and Pint mainly impacted runoff characteristics of ERC, Ts,
and Omax in the catchments studied. In Wiistebach and Rollesbroich, especially Omax for different
runoff patterns showed a significant positive correlation with Psum and Pint. A strong positive
correlation between rainfall volumes and Omax was also found by Tarasova et al. (2018b), possibly
hinting at a wet catchment state leading to an increase of event runoff coefficients ERC (Berghuijs et
al., 2016b). Conversely, we observed a significant negative correlation between rainfall and ERC in
Petzenkirchen, where even low Psum led to high ERC, which were triggered by long, consistent, low-
intensity rainfall events in winter times (Figure S13 in Supporting Information). This somewhat
counterintuitive observation is supported by the findings of Merz & Bloschl (2009) in other Austrian
catchments, for which low maximum rainfall intensities also led to high event runoff coefficients.
They attributed this phenomenon to the rainfall characteristics in Austria, with rainfall events of

longer duration leading to higher runoff coefficients than shorter, more intensive rainfall events.
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Furthermore, Psum and Pint equally impacted Omax of similar and different runoff patterns in
Petzenkirchen, indicating a significant influence of the two rainfall characteristics on the normalized
peak runoff regardless of the observed hydrograph shape. Still, similar shapes of the runoff response
at the catchment’s outlet were also found to be influenced by the temporal pattern of incoming
precipitation (Hovel et al., 2024a). The dominant control of rainfall characteristics on the runoff
response in Petzenkirchen is further supported by Szeles et al. (2024), who found a high contribution
of new water (~50 %) during peak flows, suggesting a rapid contribution of precipitation to the stream
via surface runoff. Surface runoff in the catchment may occur for various reasons, with agricultural

land use and soil compaction being one of the major influencing factors (Szeles et al., 2024).

5.3.2  Influence of wetness-derived variables on runoff characteristics

In Wiistebach, soil moisture in 50 cm and mean groundwater level (GWLmean) at GWL0O01 strongly
influenced runoff characteristics of similar runoff patterns. We observed higher correlations between
GWLmean at GWL001 and ERC and Qmax compared to GWLO003. This is consistent with the results
of Hovel et al. (2024a), who found that groundwater levels at GWLO001 showed higher correlations for
similar runoff responses compared to GWLO003. The discrepancy between the two sites may be due to
station GWL003 being influenced by the deforestation in September 2013 in the catchment, while
GWLO001 remained undisturbed. Furthermore, the strong impact of ASM in deep soil layers may be
explained by macro pores allowing deeper infiltration in forest soils compared to e.g., grasslands (e.g.,
Alaoui et al., 2011). Thus, precipitation reaching deeper soil layers might have contributed to the
catchment’s runoff as subsurface stormflow. Wiekenkamp et al. (2016b) observed catchment-wide
preferential flow during both relatively dry and extremely wet conditions in Wiistebach. Similar
results have been reported by Vichta et al. (2024) in a forested headwater catchment, highlighting the
role of trees in transporting water to deeper soil layers via preferential flow paths. Our results in
Waiistebach, therefore, suggest an overall fast pressure response between soil moisture, groundwater
level, and the stream due to potentially high hydraulic conductivity and preferential flow paths in the
subsurface, resulting in similar runoff patterns at the catchment’s outlet. Isotope data analyzed in the

catchment further support this observation, where streamflow was found to substantially consist of
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groundwater, and the young water fraction (fraction of water younger than 3 months) was generally
low at approx. 10 % (Stockinger et al., 2019). Furthermore, runoff generation often depends on a
threshold in ASM (e.g., Detty & McGuire, 2010; Tromp-Van Meerveld & McDonnell, 2006).
Threshold relationships between ASM and runoff have been observed in previous studies (e.g., Jencso
et al., 2009; Penna et al., 2011); also for Wiistebach, where the hillslope zone is known to contribute
to runoff above a soil moisture threshold when subsurface connectivity is established (Stockinger et
al., 2014). Based on the high number of matches for one soil moisture pattern in Wiistebach, an
increase in ERC was only apparent after a certain soil moisture threshold was reached (Figure 7).
Therefore, soil moisture patterns that remained below this threshold did not trigger a corresponding
runoff event detected by the event identification method, indicating significant subsurface storage
capacity in the catchment. This storage capacity is confirmed by model results of Hrachowitz et al.
(2021) in the Wiistebach catchment; they suggest a storage volume of at least ~8000 mm in the
layered and fractured Devonian shale bedrock. However, the high storage capacity may also be due to
the subsurface being connected to surrounding areas outside the boundaries of the surface catchment

area.

In contrast to Wiistebach, the dominant role of 4SM in the Rollesbroich grassland catchment in the
topsoil rather than the deep layer may be due to increased bulk density and reduced infiltration of
water down to deeper layers (Alaoui et al., 2011; Li & Shao, 2006). Qu et al. (2016) showed that bulk
density increased with soil depth based on 273 soil samples in Rollesbroich. The strong correlations
we observed between mean soil moisture in 5 cm and ERC, Ts, and Omax might therefore be due to
fast interflow close to the surface resulting from higher hydraulic conductivity in the upper soil layer

compared to the deeper layers.

In Petzenkirchen, we found the threshold relationship between ERC and ASM in 50 cm to hold for
both similar and different runoff patterns, indicating that this relationship controlled ERC of all runoff
patterns in the catchment. Still, ERC and Omax for different runoff patterns may additionally be
influenced by water bypassing the soil or preferential flow through the installed tile drains in the

catchment. In terms of seasonality, small rainfall sums combined with high ASM leading to high ERC
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also hint at a consistent subsurface connectivity during wet winter months in Petzenkirchen, as also
indicated by Széles et al. (2018) and Vreugdenhil et al. (2022). However, the catchment’s overall
shorter T's and therefore flashier response (2.4 days) compared to the other two catchments indicates a
decreased available subsurface soil storage capacity due to shallow soils with medium to poor
infiltration capacities (Bloschl et al., 2016; Gaal et al., 2012; Vreugdenhil et al., 2022). In addition,
the earlier response of the stream compared to the soil moisture in the catchment might indicate
overland flow processes, i.e., a faster connection of overland flow paths to the stream compared to the
subsurface (e.g., Beiter et al., 2020). The significant correlations between Omax and Pint for both
similar and different runoff patterns further support the presence of infiltration excess overland flow.
Furthermore, we found significant correlations between runoff characteristics, particularly ERC, and
GWLmean at HO9 and BP0O1 (p = 0.69 and p = 0.65, respectively) in Petzenkirchen for different runoff
patterns, suggesting that groundwater contributes to the stream most times of the year (Eder et al.,
2022; Exner-Kittridge et al., 2016). Although Pavlin et al. (2021) proposed a continuous connection
of the riparian zone to the stream, our results showed that pre-event groundwater levels at BPO1 may
have a limited impact on runoff characteristics with a low mean correlation coefficient of 0.23. We
therefore assume that it is not the absolute pre-event groundwater level, but the prevalent subsurface
properties, which influence the groundwater level over time, that may determine the shape of the

hydrograph.

The recession coefficient Rc and ASM in 20 cm in Petzenkirchen were significantly correlated for
different runoff patterns (p = 0.54). The nonlinearity in recession increased from dry to wet catchment
states, i.e., when riparian-hillslope connectivity was reached, which was also found in mountainous
catchments (Harman et al., 2009; Lee et al., 2023). However, in Wiistebach and Rollesbroich, we
observed the opposite relationship with a significant negative correlation between Rc and ASM in 50
cm for similar runoff patterns, i.e., increased nonlinearity of the recession in dry conditions.
Saffarpour et al. (2016) also suggested that recession is slower the wetter the catchment, and vice
versa, leading to the observed shorter timescale during dry conditions, which was additionally found

by Latron & Gallart (2008). Furthermore, Gaal et al. (2012) suggested that a short timescale in dry
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conditions may be due to more efficient drainage compared to wet catchment conditions, even for
high rainfall sums. The increased recession nonlinearity and shorter timescales in Wiistebach in dry
conditions may additionally be amplified by evapotranspiration effects (p = 0.35). Since Rc was
mainly influenced by wetness-derived variables in all three catchments, subsurface properties,
especially hydraulic conductivity, may have a strong influence on recession behavior. In this regard,
Biswal & Marani (2010) investigated basins across the US and also found geomorphological features
of the sites to mainly control recession curves. In our study, the diverging findings between the
catchments in terms of Rc and Ts and their major drivers could also be attributed to site-specific

geomorphological properties, requiring a more detailed investigation in further studies.

5.4 Limitations and possible future applications

In the past, most studies analyzing catchment-scale temporal patterns either focused on soil moisture
without considering respective event runoff characteristics (Korres et al., 2015; Liu et al., 2024;
Milicke et al., 2020; Rosenbaum et al., 2012) or investigated patterns only in runoff (e.g., Gaal et al.,
2016). Here, we directly linked runoff and soil moisture through the pattern search, with the soil
moisture patterns based on the times when runoff events were identified. Similarly, Araki et al. (2022)
linked soil moisture to runoff and suggested that particularly event-based soil moisture signatures,
e.g., the event rise time, could potentially provide inference about the dominant runoff response type
(Araki et al., 2022). In our study, dividing corresponding runoff patterns into similar and different
ones under similar soil moisture provided insights into the recurrence of runoff patterns and their
hydro-meteorological drivers. Classifying runoff responses may thus also allow conclusions to be
drawn about the predictability of the respective runoff pattern. In this regard, Zehe et al. (2007)
highlighted that runoff predictability was mainly influenced by an interplay of the initial state of the
system and threshold dynamics, which is in line with our observations in the catchments analyzed.
However, our approach also has some limitations. Since the pattern search was based on depth-
weighted mean soil moisture, with the largest weight assigned to the deep soil layer, short-term

dynamics in the topsoil may have been improperly accounted for. Furthermore, the similarity of soil
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moisture patterns was based on correlation coefficient thresholds derived by Hovel et al. (2024a), and
it needs to be tested in the future whether different thresholds would lead to different results. The time
series-based pattern search could also be expanded to other catchments with a large variety of
physical and climatic conditions where soil moisture data is available to evaluate influencing factors
on event runoff characteristics. In this way, the method may be used to distinguish between runoff
processes dominating in groups of similar and different runoff patterns based on a large sample of

catchments.

6 Summary and conclusions

We detected repeating temporal patterns in soil moisture and analyzed the influence of hydro-
meteorological variables on the corresponding runoff characteristics. Repeating soil moisture patterns
occurred in all three catchments studied, with more groups of similar patterns formed in Wiistebach
and Petzenkirchen compared to Rollesbroich. Splitting respective runoff patterns into similar and
different, we found that while the wetness-derived variables of antecedent soil moisture and
groundwater levels were significantly correlated with event characteristics for similar runoff patterns,
correlation coefficients mainly decreased for different runoff patterns in the two German catchments.
Our results, therefore, demonstrated that wetness-derived variables were decisive for generating a
similar runoff response during similar soil moisture conditions in two of three catchments tested. In
Wiistebach, the strong influence of soil moisture and groundwater levels implied a fast pressure
response between the wetness-derived variables and the stream. In Rollesbroich, the dominant role of
soil moisture in the topsoil suggested a substantial contribution of interflow to the stream. In the
Austrian catchment, runoff characteristics of similar runoff patterns showed a stronger correlation
with rainfall-derived variables in addition to soil moisture. At the same time, mean groundwater levels
mainly influenced different runoff patterns. Furthermore, rainfall characteristics impacted the
normalized peak runoff, irrespective of the shape of the observed hydrograph. Together with the
observed earlier peak of the hydrograph compared to soil moisture for identified patterns, our results

emphasize the importance of overland flow processes in the catchment.
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While our method could differentiate between influencing factors of similar and different runoff
patterns in the German catchments, major drivers of runoff characteristics varied for respective
patterns in the Austrian catchment. The time series-based pattern search thus provides a novel
framework for analyzing runoff characteristics and their drivers, helping to evaluate the dominant
hydrological processes in small-scale catchments. Extending the proposed approach to a large sample
of catchments has the potential to improve our understanding of the recurrence and thus the possible

predictability of runoff patterns and their drivers.
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