001045757 001__ 1045757
001045757 005__ 20260122125254.0
001045757 0247_ $$2doi$$a10.3934/ipi.2025038
001045757 0247_ $$2ISSN$$a1930-8337
001045757 0247_ $$2ISSN$$a1930-8345
001045757 0247_ $$2WOS$$aWOS:001562637800001
001045757 037__ $$aFZJ-2025-03588
001045757 041__ $$aEnglish
001045757 082__ $$a510
001045757 1001_ $$0P:(DE-HGF)0$$aHarris, Isaac$$b0$$eCorresponding author
001045757 245__ $$aOn the transmission eigenvalues for scattering by a clamped planar region
001045757 260__ $$bAIMS$$c2026
001045757 3367_ $$2DRIVER$$aarticle
001045757 3367_ $$2DataCite$$aOutput Types/Journal article
001045757 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1765355043_24877
001045757 3367_ $$2BibTeX$$aARTICLE
001045757 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001045757 3367_ $$00$$2EndNote$$aJournal Article
001045757 520__ $$aIn this paper, we consider a new transmission eigenvalue problem derived from the scattering by a clamped cavity in a thin elastic material. Scattering in a thin elastic material can be modeled by the Kirchhoff–Love infinite plate problem. This results in a biharmonic scattering problem that can be handled by operator splitting. The main novelty of this transmission eigenvalue problem is that it is posed in all of $\mathbb{R}^2$. This adds analytical and computational difficulties in studying this eigenvalue problem. Here, we prove that the eigenvalues can be recovered from the far field data as well as discreteness of the transmission eigenvalues. We provide some numerical experiments via boundary integral equations to demonstrate the theoretical results. We also conjecture monotonicity with respect to the measure of the scatterer from our numerical experiments.
001045757 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001045757 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001045757 7001_ $$0P:(DE-Juel1)169421$$aKleefeld, Andreas$$b1
001045757 7001_ $$0P:(DE-HGF)0$$aLee, Heejin$$b2
001045757 773__ $$0PERI:(DE-600)2304184-5$$a10.3934/ipi.2025038$$gVol. 0, no. 0, p. 0 - 0$$n0$$p152-172$$tInverse problems and imaging$$v21$$x1930-8337$$y2026
001045757 8564_ $$uhttps://juser.fz-juelich.de/record/1045757/files/10.3934_ipi.2025038-1.pdf$$yRestricted
001045757 909CO $$ooai:juser.fz-juelich.de:1045757$$pVDB
001045757 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169421$$aForschungszentrum Jülich$$b1$$kFZJ
001045757 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001045757 9141_ $$y2025
001045757 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001045757 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001045757 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001045757 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
001045757 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
001045757 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
001045757 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001045757 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINVERSE PROBL IMAG : 2022$$d2024-12-18
001045757 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
001045757 920__ $$lyes
001045757 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001045757 980__ $$ajournal
001045757 980__ $$aVDB
001045757 980__ $$aI:(DE-Juel1)JSC-20090406
001045757 980__ $$aUNRESTRICTED